The existing traditional edge detection algorithms process a single pixel on an image at a time, thereby calculating a value which shows the edge magnitude of the pixel and the edge orientation. Most of these existing algorithms convert the coloured images into gray scale before detection of edges. However, this process leads to inaccurate precision of recognized edges, thus producing false and broken edges in the image. This paper presents a profile modelling scheme for collection of pixels based on the step and ramp edges, with a view to reducing the false and broken edges present in the image. The collection of pixel scheme generated is used with the Vector Order Statistics to reduce the imprecision of recognized edges when converting from coloured to gray scale images. The Pratt Figure of Merit (PFOM) is used as a quantitative comparison between the existing traditional edge detection algorithm and the developed algorithm as a means of validation. The PFOM value obtained for the developed algorithm is 0.8480, which showed an improvement over the existing traditional edge detection algorithms.
Parents of children with neurological disorders face several socioeconomic challenges in nurturing them. Experiences of parents in the study area have not been explored. This descriptive cross-sectional study was designed to investigate socioeconomic challenges faced by parents of children with neurological dysfunctions. Paediatric Neurology Outpatient Clinic,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.