In recent years, immense development in Structural Health Monitoring (SHM) of bridges helps address the life span and reliability of bridge structure at contrasting phases of their service life. This article provides a detailed understanding of bridge monitoring, and it focuses on sensors utilized and all kinds of damage detection (strain, displacement, acceleration, and temperature) according to bridge nature (scour, suspender failure, disconnection of bolt and cables, etc.) and environmental degradation under static and dynamic loading. This paper presents information about various methods, approaches, case studies, advanced technologies, real-time experiments, stimulated models, data acquisition, and predictive analysis. Future scope and research also discussed the implementation of SHM in bridges. The main aim of this research is to assist researchers in better understanding the monitoring mechanism in bridges.
The lifetime of PV modules is reduced due to a variety of degradation modes. Failure modes that contribute significantly to PV module output power losses include snail trails, hotspots, micro cracks, bubbles or delamination, and dust accumulation. The correlations between these phenomena, like those between corrosive environment and potential-induced breakdown, are not well understood. As a result, in this review, we will try to explain the relationship between snail trails, hotspots, microcracks, bubbles or delamination, and dust accumulation on photovoltaic module components in order to ensure the PV modules' reliability. This paper in the Photovoltaic literature gives an overview of several Maximum Point Tracking (MPPT) techniques that have been recently designed, simulated and/or experimentally validated. The main objective of every MPPT technology is to maximize the output of a photovoltaic array with shade or unshade conditions. The characteristics presented in this paper are unique, and they provide researchers with a starting point for choosing and implementing an appropriate MPPT technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.