One of the main drawbacks of Element Free Galerkin (EFG) method is its dependence on moving least square shape functions which don't satisfy the Kronecker Delta property, so in this method it's not possible to apply Dirichlet boundary conditions directly. The aim of the present paper is to discuss different aspects of three widely used methods of applying Dirichlet boundary conditions in EFG method, called Lagrange multipliers, penalty method, and coupling with finite element method. Numerical simulations are presented to compare the results of these methods form the perspective of accuracy, convergence and computational expense. These methods have been implemented in an object oriented programing environment, called IN-SANE, and the results are presented and compared with the analytical solutions.
In this paper, we present an algorithm for approximating numerical solution of singularly perturbed boundary value problems by means of homotopy analysis and tau Bernestein polynomial method. The method is tested for several problems and the results demonstrate reliability and efficiency of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.