Abstract. The EPIC focal plane imaging spectrometers on XMM-Newton use CCDs to record the images and spectra of celestial X-ray sources focused by the three X-ray mirrors. There is one camera at the focus of each mirror; two of the cameras contain seven MOS CCDs, while the third uses twelve PN CCDs, defining a circular field of view of 30 diameter in each case. The CCDs were specially developed for EPIC, and combine high quality imaging with spectral resolution close to the Fano limit. A filter wheel carrying three kinds of X-ray transparent light blocking filter, a fully closed, and a fully open position, is fitted to each EPIC instrument. The CCDs are cooled passively and are under full closed loop thermal control. A radio-active source is fitted for internal calibration. Data are processed on-board to save telemetry by removing cosmic ray tracks, and generating X-ray event files; a variety of different instrument modes are available to increase the dynamic range of the instrument and to enable fast timing. The instruments were calibrated using laboratory X-ray beams, and synchrotron generated monochromatic X-ray beams before launch; in-orbit calibration makes use of a variety of celestial X-ray targets. The current calibration is better than 10% over the entire energy range of 0.2 to 10 keV. All three instruments survived launch and are performing nominally in orbit. In particular full field-of-view coverage is available, all electronic modes work, and the energy resolution is close to pre-launch values. Radiation damage is well within pre-launch predictions and does not yet impact on the energy resolution. The scientific results from EPIC amply fulfil pre-launch expectations.
Aims. We present the reconstruction of hydrostatic mass profiles in 13 X-ray luminous galaxy clusters that have been mapped in their X-ray and Sunyaev-Zeldovich (SZ) signals out to R200 for the XMM-Newton Cluster Outskirts Project (X-COP). Methods. Using profiles of the gas temperature, density, and pressure that have been spatially resolved out to median values of 0.9R500, 1.8R500, and 2.3R500, respectively, we are able to recover the hydrostatic gravitating mass profile with several methods and using different mass models. Results. The hydrostatic masses are recovered with a relative (statistical) median error of 3 % at R500 and 6% at R200. By using several different methods to solve the equation of the hydrostatic equilibrium, we evaluate some of the systematic uncertainties to be of the order of 5% at both R500 and R200. A Navarro-Frenk-White profile provides the best-fit in 9 cases out of 13; the remaining 4 cases do not show a statistically significant tension with it. The distribution of the mass concentration follows the correlations with the total mass predicted from numerical simulations with a scatter of 0.18 dex, with an intrinsic scatter on the hydrostatic masses of 0.15 dex. We compare them with the estimates of the total gravitational mass obtained through X-ray scaling relations applied to YX , gas fraction, and YSZ , and from weak lensing and galaxy dynamics techniques, and measure a substantial agreement with the results from scaling laws, from WL at both R500 and R200 (with differences below 15%), from cluster velocity dispersions. Instead, we find a significant tension with the caustic masses that tend to underestimate the hydrostatic masses by 40% at R200. We also compare these measurements with predictions from alternative models to the cold dark matter, like the emergent gravity and MOND scenarios, confirming that the latter underestimates hydrostatic masses by 40% at R1000, with a decreasing tension as the radius increases, and reaches ∼15% at R200, whereas the former reproduces M500 within 10%, but overestimates M200 by about 20%. Conclusions. The unprecedented accuracy of these hydrostatic mass profiles out to R200 allows us to assess the level of systematic errors in the hydrostatic mass reconstruction method, to evaluate the intrinsic scatter in the NFW c − M relation, and to robustly quantify differences among different mass models, different mass proxies, and different gravity scenarios.
Galaxy clusters are the endpoints of structure formation and are continuously growing through the merging and accretion of smaller structures. Numerical simulations predict that a fraction of their energy content is not yet thermalized, mainly in the form of kinetic motions (turbulence, bulk motions). Measuring the level of non-thermal pressure support is necessary to understand the processes leading to the virialization of the gas within the potential well of the main halo and to calibrate the biases in hydrostatic mass estimates. We present high-quality measurements of hydrostatic masses and intracluster gas fraction out to the virial radius for a sample of 13 nearby clusters with available XMM-Newton and Planck data. We compare our hydrostatic gas fractions with the expected universal gas fraction to constrain the level of non-thermal pressure support. We find that hydrostatic masses require little correction and infer a median non-thermal pressure fraction of ∼ 6% and ∼ 10% at R 500 and R 200 , respectively. Our values are lower than the expectations of hydrodynamical simulations, possibly implying a faster thermalization of the gas. If instead we use the mass calibration adopted by the Planck team, we find that the gas fraction of massive local systems implies a mass bias 1 − b = 0.85 ± 0.05 for SZ-derived masses, with some evidence for a mass-dependent bias. Conversely, the high bias required to match Planck CMB and cluster count cosmology is excluded by the data at high significance, unless the most massive halos are missing a substantial fraction of their baryons.
Context. Cold fronts have been observed in several galaxy clusters. Understanding their nature and origin is extremely important for investigating the internal dynamics of clusters. Aims. To gain insight into the nature of these features, we carry out a statistical investigation of their occurrence in a sample of galaxy clusters observed with XMM-Newton and correlate this occurrence with different cluster properties. Methods. We selected a sample of 45 clusters starting from the B55 flux limited sample (Edge et al. 1990, MNRAS, 245, 559) and performed a systematic search for cold fronts. Results. We find that a large fraction of clusters host at least one cold front. Cold fronts are easily detected in all systems that are manifestly undergoing a merger event in the plane of the sky, while the presence of these features in the remaining clusters is related to a steep entropy gradient, in agreement with theoretical expectations. Assuming that cold fronts in cool core clusters are triggered by minor merger events, we estimate a minimum of 1/3 merging events per halo per Gyr.
Abstract. We present a temperature map and a temperature profile of the central part (r < 20 or 1/4 virial radius) of the Coma cluster. We combined 5 overlapping pointings made with XMM/EPIC/MOS and extracted spectra in boxes of 3.5 × 3.5 . The temperature distribution around the two central galaxies is remarkably homogeneous (r < 10 ), contrary to previous ASCA results, suggesting that the core is actually in a relaxed state. At larger distance from the cluster center we do see evidence for recent matter accretion. We confirm the cool area in the direction of NGC 4921, probably due to gas stripped from an infalling group. We find indications of a hot front in the South West, in the direction of NGC 4839, probably due to an adiabatic compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.