Background
Human semen quality has declined in industrialized countries. Pollution, smoking, and the consumption of a Western-style diet are all hypothesized as potential causes.
Objective
We evaluated the effect of chronic consumption of nuts on changes in conventional semen parameters and the potential mechanisms implicated.
Design
The FERTINUTS study was a 14-wk randomized, controlled, parallel trial. A total of 119 healthy men, aged 18–35 y, were allocated to 1 of 2 intervention groups: one group was fed the usual Western-style diet enriched with 60 g of a mixture of nuts/d (nut group), and the other was fed the usual Western-style diet avoiding nuts (control group). Semen and blood samples were collected at baseline and at the end of the intervention. Dietary information was recorded throughout the trial. Changes in conventional semen parameters (pH, volume, sperm count and concentration, motility, and morphology) were determined as primary outcomes. The effect of nut consumption on sperm DNA fragmentation (SDF), reactive oxygen species (ROS) production, chromosome anomalies (X, Y, and 18), total DNA methylation, and microRNA expression were measured in sperm samples as potential causes of the changes in the seminogram.
Results
Compared with the control group, improvements in total sperm count (P = 0.002) and vitality (P = 0.003), total motility (P = 0.006), progressive motility (P = 0.036), and morphology of sperm (P = 0.008) were observed in the nut group. Participants in the nut group showed an increase in the consumption of total fat, monounsaturated fatty acids, polyunsaturated fatty acids, magnesium, vitamin E, α-linolenic acid, total omega-3 (n–3) and ω-3:ω-6 ratio intake during the intervention. Participants in the nut group showed a significant reduction in SDF (P < 0.001) and in the expression of hsa-miR-34b-3p (P = 0.036). No significant changes in ROS, sperm chromosome anomalies, or DNA methylation were observed between groups.
Conclusions
The inclusion of nuts in a Western-style diet significantly improves the total sperm count and the vitality, motility, and morphology of the sperm. These findings could be partly explained by a reduction in the sperm DNA fragmentation. This trial was registered at ISRCTN as ISRCTN12857940.