Pedestrian safety is a primary traffic issue in urban environment. This article deals with the detection of pedestrians by means of a laser sensor. This sensor, placed on the front of a vehicle collects information about distance distributed according to 4 laser planes. Like a vehicle, a pedestrian constitutes in the vehicle environment an obstacle which must be detected, located, then identified and tracked if necessary. In order to improve the robustness of pedestrian detection using a single laser sensor we propose here a detection system based on the fusion of information located in the 4 laser planes. In this paper, we propose a Parzen kernel method that allows first to isolate the "pedestrian objects" in each plane and then to carry out a decentralized fusion according to the 4 laser planes. Finally, to improve our pedestrian detection algorithm we use a MCMC based PF method allowing a closer obervation of pedestrian random movement dynamics. Many experimental results validate and show the relevance of our pedestrian detection algorithm in regard to a method using only a single-row laser-range scanner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.