[1] Retrieval of abundances of atmospheric species from limb infrared emission spectra requires accurate knowledge of the pointing of the instrument in terms of elevation, as well as temperature and pressure profiles. An optimal estimation-based method is presented to infer these quantities from measured spectra. The successful and efficient joint retrieval of these largely correlated quantities depends strongly on the proper selection of the retrieval space, the selection of spectral microwindows, and the choice of reasonable constraints which force the solution to be stable. The proposed strategy was applied to limb emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Envisat research satellite in order to validate the instrument pointing information based on the satellite's orbit and attitude control system which uses star tracker information as a reference. Both systematic and periodic pointing calibration errors were detected, which meanwhile have been corrected to a major part. Furthermore, occasional pitch jumps were detected, which could be assigned to parameter uploads to the satellite's orbit and attitude control system. It has been shown that in general, it is justified to assume local thermodynamic equilibrium below 60 km for these purposes. The retrieval method presented has been proven to be suitable for independent monitoring of MIPAS line-of-sight pointing.
The large solar storms in October–November 2003 produced enormous solar proton events (SPEs) where high energetic particles reached the Earth and penetrated into the middle atmosphere in the polar regions. At this time, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was observing the atmosphere in the 6–68 km altitude range. MIPAS observations of NOx (NO + NO2) and O3 of the period from 25 October to 14 November 2003 are the first global measurements of NOx species, covering both the summer (daylight) and winter (dark) polar regions during an SPE. Very large values of NOx in the upper stratosphere of 180 ppbv (parts per billion by volume) have been measured, and a large asymmetry in northern and southern polar cap NOx enhancements was found. Arctic mean polar cap (>60°) NOx enhancements of 20 to 70 ppbv between 40 to 60 km lasted for at least 2 weeks, while the Antarctic mean NOx enhancement was between 10 and 35 ppbv and was halved after 2 weeks. Ozone shows depletion signatures associated with both HOx (H + OH + HO2) and NOx enhancements but at different timescales. Arctic lower mesospheric (upper stratospheric) ozone is reduced by 50–70% (30–40%) for about 2 weeks after the SPEs. A smaller ozone depletion signal was observed in the Antarctic atmosphere. After the locally produced Arctic middle and upper stratospheric as well as mesospheric NOx enhancement, large amounts of NOx were observed until the end of December. These are explained by downward transport processes. These enhancements drastically declined with the mid‐December stratospheric warming. Significant O3 depletion was observed inside the polar vortex in a wide altitude range during this period. From mid‐January until the end of March 2004, MIPAS observed extraordinary high values of NO2 in the upper stratosphere of the northern polar region (mean in‐vortex values up to 350 ppbv at ∼54 km), which seem to be caused by the unusually strong vortex and downward transport at that time together with an uncommonly large auroral activity starting with the solar storms in October–November and continuing over the winter. In‐vortex ozone was observed to significantly decline in the mid‐February to late March period above the 1750 K potential temperature level.
Pronounced upper stratospheric and mesospheric NOx enhancements were measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) in the Southern Hemisphere (SH) polar vortex from May to August 2003, reaching average abundances of 60 ppbv at 50–60 km in July. Peak mixing ratios of around 200 ppbv were measured in the polar night, representing the highest values ever recorded in the SH. The observed NOx enhancements are attributed to production by electron precipitation in the upper mesosphere and lower thermosphere and subsequent descent with the meridional circulation. Using measured CH4 and CO distributions as dynamic tracers, the downward transport of NOx‐rich air masses into the lower and middle stratosphere has been investigated. Upper atmospheric air with average NOx abundances of 15 ppbv reached the 800–1000 K potential temperature region (around 30 km) by the end of July, where it remained until the final warming in late October. The NOx descent was confined to the polar vortex, although significant mixing of tropical and NOx‐rich vortex air masses began already in August above 40 km. The amount of upper atmospheric NOy measured inside of the SH vortex in late spring was 1.1 Gigamoles (GM) which is in good agreement with previous estimates from HALOE data. The global coverage of MIPAS data further allows to quantify the upper atmospheric NOx dispersed into the stratosphere during August‐September, estimated in 1.3 GM. The net deposition of NOx into the stratosphere during the 2003 Antarctic winter (2.4 GM) makes up 9% of the N2O oxidation source in the SH, twice as much as estimated in previous studies. NOx and tracer distributions observed on several days during the NH winter 2002/2003 have been analyzed for comparison. We found that high planetary wave activity, resulting in the major midwinter warming had led to a rather inefficient NOx downward transport with negligible deposition of NOx into the lower and middle stratosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.