Human cytochrome P450 (P450) 4F11 is still considered an "orphan" because its function is not well characterized. A bacterial expression system was developed for human P450 4F11, producing ~230 nmol P450 from a 3-liter culture of Escherichia coli. P450 4F11 was purified and utilized for untargeted substrate searches in human liver extract using a liquid chromatography/mass spectrometry-based metabolomic and isotopic labeling approach (Z. Tang et al., Anal. Chem. 81, 3071-3078, 2009). Four fatty acids-palmitic, oleic, arachidonic, and docosahexaenoic-were identified in human liver and verified as substrates of P450 4F11. The products were characterized as ω-hydroxylated fatty acids by gas chromatography-mass spectrometry analysis of their trimethylsilyl derivatives. Kinetic analysis of the oxidation products confirmed that the fatty acids are substrates oxidized by P450 4F11. P450 4F11 also exhibited low activity for some drug Ndemethylation reactions but none for activation of several procarcinogens.
With the rapid completion of genomic sequences of organisms today, we have far more gene products than functions we can ascribe. A number of experimental strategies have been developed and applied, both in vitro and in vivo, to put functions to these orphan proteins. The "deorphanization" of human and Streptomyces cytochrome P450 enzymes is considered quite important for pharmacology, with ramifications for the use of clinical therapeutics. The myriad of possibilities is too enormous to screen one reaction at a time, thus metabolomic or proteomic screens with complex biological samples are promising current strategies.
One of the general problems in biology today is that we are characterizing genomic sequences much faster than identifying the functions of the gene products, and the same problem exists with cytochromes P450 (P450). One-fourth of the human P450s are not well-characterized and therefore considered “orphans.” A number of approaches to deorphanization are discussed generally. Several liquid chromatography-mass spectrometry approaches have been applied to some of the human and Streptomyces coelicolor P450s. One current limitation is that too many fatty acid oxidations have been identified and we are probably missing more relevant substrates, possibly due to limits of sensitivity.
Myxobacterial CYP260B1 from Sorangium cellulosum was heterologously expressed in Escherichia coli and purified. The in vitro conversion of a small focused substrate library comprised of Δ4 C21-steroids and steroidal drugs using surrogate bovine redox partners shows that CYP260B1 is a novel steroid hydroxylase. CYP260B1 performs the regio- and stereoselective hydroxylation of the glucocorticoid cortodoxone (RSS) to produce 6β-OH-RSS. The substrate-free crystal structure of CYP260B1 (PDB 5HIW) was resolved. Docking of the tested ligands into the crystal structure suggested that the C17 hydroxy moiety and the presence of either a keto or a hydroxy group at C11 determine the selectivity of hydroxylation.
Picking a pucker! Fixed‐conformation North (N)‐ and South (S)‐methanocarba‐2′‐deoxyadenosine‐triphosphate (MC‐dATP) have different effects in DNA strand extension catalyzed by HIV‐1 RT and three human Y‐family DNA polymerases (pols). All of the polymerases tested preferred the N‐oriented furanose geometry, though pol η could insert both pucker mimics. The growth of malignant breast cancer cells overexpressing pol ι was more severely inhibited by N‐MC‐dATP than that of nonmalignant breast cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.