A blockchain network's economics and user confidence can be seriously harmed by fraud. Consensus algorithms like proof of work and proof of stake can verify the legitimacy of a transaction but not the identity of the people who are conducting or verifying it. On a blockchain network, fraud can still occur, as a result of this. One approach to fighting fraud is to make use of machine learning techniques. There are two types of machine learning: supervised and unsupervised. We use a variety of supervised machine learning techniques in this study to distinguish between legitimate and fraudulent purchases. We also compare decision trees, Naive Bayes, logistic regression, multilayer perceptron, and other supervised machine learning techniques in detail for this challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.