A clear alternative to reach the goal of sustainable development in the Construction Sector is the development of alternative building materials to Ordinary Portland Cement (OPC) in a more energetically as well as environmentally eco-efficient way. Alkaline cements (Alkali-Activated Materials, AAMs) and geopolymers meet these requirements; and they are based on the alkali activation of aluminosilicates (mainly waste and industrial by-products, such as blast furnace slag, fly ash and ceramic waste) in highly alkaline solutions. AAMs cements and concretes are notable for being very durable and mechanically resistant. However, to date their rheological behaviour is not well controlled and there is little understanding of it, with very disparate experimental data. Despite this, their rheological behaviour is not fully understood and little is known on the disparate data obtained in AAM pastes. Moreover, the common additives used in the preparation of OPC concretes and the rheology modifiers/controllers are also unstable in the AAMs systems.
Understanding and controlling the rheology of the AAMs systems will ultimately determine whether they can be implemented in the market, and will open up greater competitive possibilities in a crisis-affected sector. A systematic study of the factors that affect the rheological properties of AAMs (pastes, mortars and concretes) is therefore necessary in order to ultimately develop more resistant and durable materials.
Abstract.A clear alternative to reach the goal of sustainable development in the Construction Sector is the development of alternative building materials to Ordinary Portland Cement (OPC) in a more energetically as well as environmentally eco-efficient way. Alkaline cements (Alkali-Activated Materials, AAMs) and geopolymers meet these requirements; and they are based on the alkali activation of aluminosilicates (mainly waste and industrial by-products, such as blast furnace slag, fly ash and ceramic waste) in highly alkaline solutions. AAMs cements and concretes are notable for being very durable and mechanically resistant. However, to date their rheological behaviour is not well controlled and there is little understanding of it, with very disparate experimental data. Despite this, their rheological behaviour is not fully understood and little is known on the disparate data obtained in AAM pastes. Moreover, the common additives used in the preparation of OPC concretes and the rheology modifiers/controllers are also unstable in the AAMs systems. Understanding and controlling the rheology of the AAMs systems will ultimately determine whether they can be implemented in the market, and will open up greater competitive possibilities in a crisis-affected sector. A systematic study of the factors that affect the rheological properties of AAMs (pastes, mortars and concretes) is therefore necessary in order to ultimately develop more resistant and durable materials.
The effect of two precursors (slag and fly ash), different particle size distribution, and three types of aggregate (siliceous sand, limestone, and recycled concrete) on alkali-activated material (AAM) mortar rheology were studied and compared to their effect on an ordinary Portland Cement (OPC) mortar reference. Stress growth and flow curve tests were conducted to determine plastic viscosity and static and dynamic yield stress of the AAM and OPC mortars. In both OPC and AAM mortars, a reduction of the aggregate size induces a rise of the liquid demand to preserve the plastic consistency of the mortar. In general terms, an increase of the particle size of the siliceous aggregates leads to a decrease of the measured rheological parameters. The AAM mortars require higher liquid/solid ratios than OPC mortars to attain plastic consistency. AAM mortars proved to be more sensitive than OPC mortars to changes in aggregate nature. The partial replacement of the siliceous aggregates with up to 20% of recycled concrete aggregates induced no change in mixing liquid uptake, in either AAM or OPC mortars. All the AAM and OPC mortars studied fitted to the Bingham model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.