A full azimuthal φ-wedge of the ATLAS liquid argon end-cap calorimeter has been exposed to beams of electrons, muons and pions in the energy range 6 GeV ≤ E ≤ 200 GeV at the CERN SPS. The angular region studied corresponds to the ATLAS impact position around the pseudorapidity interval 1.6 < |η| < 1.8. The beam test set-up is described. A detailed study of the performance is given as well as the related intercalibration constants obtained. Following the ATLAS hadronic calibration proposal, a first study of the hadron calibration using a weighting ansatz is presented. The results are compared to predictions from Monte Carlo simulations, based on GEANT 3 and GEANT 4 models.
We study, both theoretically and experimentally, a free-electron maser (FEM) with a two-mirror resonator that includes the advanced Bragg structure based on coupling of propagating and cutoff waves as an upstream reflector. Similar to gyrotrons, the presence of a cutoff wave in the feedback loop improves significantly the selectivity of the resonator at large values of the oversize factor and facilitates a stable single-mode oscillation regime in short wavelength bands. Proof-of-principle experiments conducted at the induction linac LIU-3000 (Dubna) demonstrate the operability of the FEM with the proposed modification of the Bragg resonator. At the transverse oversize factor of about 5, stable narrow-band generation was achieved with an output power of up to 7 MW and the oscillation frequency of about 80 GHz corresponding to the frequency of the cutoff mode excited in the advanced Bragg reflector. These investigations encourage the application of the advanced Bragg resonators for the development of high-power long-pulse FELs driven by induction linacs and operating in the subterahertz to terahertz frequency range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.