The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13θ13 by observing νeνe appearance in a νμνμ beam. It also aims to make a precision measurement of the known oscillation parameters, View the MathML sourceΔm232 and sin22θ23sin22θ23, via νμνμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem
T2K is a long-baseline neutrino oscillation experiment searching for ν e appearance in a ν µ beam. The beam is produced at the J-PARC accelerator complex in Tokai, Japan, and the neutrinos are detected by the SuperKamiokande detector located 295 km away in Kamioka. A suite of near detectors (ND280) located 280 m downstream of the production target is used to characterize the components of the beam before they have had a chance to oscillate and to better understand various neutrino interactions on several nuclei. This paper describes the design and construction of two massive fine-grained detectors (FGDs) that serve as active targets in the ND280 tracker. One FGD is composed solely of scintillator bars while the other is partly scintillator and partly water. Each element of the FGDs is described, including the wavelength shifting fiber and Multi-Pixel Photon Counter used to collect the light signals, the readout electronics, and the calibration system. Initial tests and in situ results of the FGDs' performance are also presented.
We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corresponding to 1.43×10 20 protons on target, we observe 31 fully-contained single µ-like ring events in Super-Kamiokande, compared with an expectation of 104 ± 14 (syst) events without neutrino oscillations. The best-fit point for two-flavor νµ → ντ oscillations is sin 2 (2θ23) = 0.98 and |∆m 2 32 | = 2.65 × 10 −3 eV 2 . The boundary of the 90% confidence region includes the points (sin 2 (2θ23), |∆m 2 32 |) = (1.0, 3.1×10 −3 eV 2 ), (0.84, 2.65×10 −3 eV 2 ) and (1.0, 2.2×10 −3 eV 2 ).
Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.