In this study, we explored the concept of introducing asymmetry to cell shapes by patterned cell culture substrates, and investigated the consequence of this induced asymmetry to cell migration behaviors. Three patterns, named "Squares", "Grating", and "Arcs" were fabricated, representing different levels of rotational asymmetry. Using time-lapse imaging, we systematically compared the motility and directionality of mouse osteoblastic cells MC3T3-E1 cultured on these patterns. Cells were found to move progressively faster on "Arcs" than on "Grating", and cells on "Squares" were the slowest, suggesting that cell motility correlates with the level of rotational asymmetry of the repeating units of the pattern. Among these three patterns, on the "Arcs" pattern, the least symmetrical one, cells not only moved with the highest velocity but also the strongest directional persistence. Although this enhanced motility was not associated with the detected number of focal adhesion sites in the cells, the pattern asymmetry was reflected in the asymmetrical cell spreading. Cells on the "Arcs" pattern consistently displayed larger cytoplasmic protrusion on one side of the cell. This asymmetry in cell shape determined the direction and speed of cell migration. These observations suggest that topographical patterns that enhance the imbalance between the leading and trailing fronts of adherent cells will increase cell speed and control movement directions. Our discovery shows that complex cell behaviors such as the direction of cell movement are influenced by simple geometrical principles, which can be utilized as the design foundation for platforms that guide and sort cultured cells.
On a microgrooved substrate, cells migrate along the pattern, and at random positions, reverse their directions. Here, we demonstrate that these reversals can be controlled by introducing discontinuities to the pattern. On “V-shaped grating patterns”, mouse osteogenic progenitor MC3T3-E1 cells reversed predominately at the bends and the ends. The patterns were engineered in a way that the combined effects of angle- and length-dependence could be examined in addition to their individual effects. Results show that when the bend was placed closer to one end, migration behaviour of cells depends on their direction of approach. At an obtuse bend (135°), more cells reversed when approaching from the long segment than from the short segment. But at an acute bend (45°), this relationship was reversed. Based on this anisotropic behaviour, the designed patterns effectively allowed cells to move in one direction but blocked migrations in the opposing direction. This study demonstrates that by the strategic placement of bends and ends on grating patterns, we can engineer effective unidirectional switching gates that can control the movement of adherent cells. The knowledge developed in this study could be utilised in future cell sorting or filtering platforms without the need for chemotaxis or microfluidic control.
In this study, we aimed at studying the effects of engineered and patterned substrates on the migration characteristics of mammalian cancer cell lines. On the shallow topographical patterns, cells from different histological origins showed different migration speed and directionality. We also observed that cells from the same origin showed distinctive behaviour, suggesting these substrate topographies could distinguish cancer subtypes. To eliminate the influence of genetic background, we examined two isogenic subpopulations of ovarian cancer cell lines for their different metastatic activities. While these cell lines showed indistinguishable migration characteristics on a flat substrate, their motilities on the patterned substrates were highly different, suggesting that cancer cells' motilities on these substrates varied in a metastasis-dependent manner. While cells with different metastatic activities showed similar morphology and focal adhesion distribution on flat surface, vinculin aggregated into single cytoplasmic foci in metastatic cells cultured on the engineered substrates. This implies that the topographical patterns on the substrates induced vinculin redistribution in cancer cells with a higher invasive activity. The fabricated platforms with topographical patterns offer a novel in vitro technique for metastasis assessment. Moreover, such platforms could potentially provide the opportunity to sort cells in different metastatic states using advanced pattern designs and features.
This paper presents a compact ultra-wideband frequency selective surface (FSS) with band stop response. The proposed single layer FSS is printed on FR-4 substrate with a unit cell periodicity of 0.138λ 0 × 0.138λ 0, corresponding to its lowest operating frequency. The developed FSS exhibits stable response for plane waves with normal and oblique incidence with TE and TM polarization for angles varying from 0° to 60°. The FSS offers -10dB bandwidth of 141 % covering the entire ultra-wideband frequency range from 2.39 GHz to 13.67 GHz. The structural parameters are optimized, and an equivalent circuit is modelled to analyze the performance of FSS. The simulated results are validated by the measured values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.