Mobile Ad hoc Network consists of mobile nodes without any assisting infrastructure. Mobility of nodes causes network partition. This leads to heavy overhead and less packet forwarding ratio. In this research work, Residual Energy based Reliable Multicast Routing Protocol (RERMR) is proposed to attain more network lifetime and increased packet delivery and forwarding rate. A multicast backbone is constructed to achieve more stability based on node familiarity and trustable loop. Reliable path criterion is estimated to choose best reliable path among all available paths. Data packets will be forwarded once the reliable path is chosen. We have also demonstrated that residual energy of paths aids to provide maximum network lifetime. Based on the simulation results, the proposed work achieves better performance than previous protocols in terms of packet reliability rate, network stability rate, end to end delay, end to end transmission and communication overhead. All Rights Reserved
We investigate the effect of Co2+ ion doping in magnetite (Fe3O4) on its crystal structure, magnetic properties, and phase stability during air and vacuum annealing. The nanoparticles are prepared by co-precipitation method and the particles are characterized by XRD, small angle x-ray scattering (SAXS), themogravimetric and differential scanning calorimetry (DSC), and vibrating sample magnetometer. The SAXS analysis on the doped samples show the most probable size, shape, and the polydispersity of particles, synthesized with different fractions (0–0.6) of Co2+ ion doping remains almost the same. On increasing cobalt content ferrimagnetic to the antiferromagnetic hematite (α-Fe2O3) phase transformation temperature is found to increase dramatically. For 0.1 fraction of Co2+ metal ion doping, an enhancement of 100 °C in the γ-Fe2O3 to α-Fe2O3 phase transition temperature is observed in the air annealed samples, whereas magnetic nature remains stable up to 1000 °C in vacuum annealed samples. On increasing the cobalt fractions beyond 0.2, air annealed samples show no change in the phase transition temperature. The observed enhancement in the phase transition temperature is attributed to the increased activation energy for phase transformation in presence of Co2+. Further, the DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in cobalt fraction (x). The decrease in enthalpy from 89.86 to 17.62 J g−1 with an increase in cobalt content indicates that the degree of conversion of maghemite to hematite decreases with the cobalt content, which is in good agreement with the Rietveld analysis. The decrease in the Ms value in air annealed sample is attributed to the re-distribution of cations in the tetrahedral and octahedral sites, as the Fe3+A-Fe3+B super-exchange interaction is different from the Co2+A-Fe3+B interaction. These results suggest that a very small percentage of Co2+ metal ion doping can dramatically enhance the thermal stability of magnetic nanoparticles, which will have important consequences on the phase stability of ferrite nanocrystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.