This paper generalizes, in two senses, work of Petzl and Sharp, who showed that, for a Zgraded module M over a Z-graded commutative Noetherian ring R, the graded Cousin complex for M introduced by Goto and Watanabe can be regarded as a subcomplex of the ordinary Cousin complex studied by Sharp, and that the resulting quotient complex is always exact. The generalizations considered in this paper are, firstly, to multigraded situations and, secondly, to Cousin complexes with respect to more general filtrations than the basic ones considered by Petzl and Sharp. New arguments are presented to provide a sufficient condition for the exactness of the quotient complex in this generality, as the arguments of Petzl and Sharp will not work for this situation without additional input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.