We compute the total cross section and the transverse momentum distribution for single charged slepton and sneutrino production at hadronic colliders including NLO supersymmetric and nonsupersymmetric QCD corrections. The supersymmetric QCD corrections can be substantial. We also resum the gluon transverse momentum distribution and compare our results with two Monte Carlo generators. We compute branching ratios of the supersymmetric decays of the slepton and determine event rates for the like-sign dimuon final state at the Tevatron and at the LHC.
We investigate the bounds on the mass of the lightest neutralino from rare meson decays within the minimal supersymmetric standard model (MSSM) with and without minimal flavor violation. We present explicit formulas for the two-body decays of mesons into light neutralinos and perform the first complete calculation of the loop-induced decays of kaons to pions and light neutralinos and B mesons to kaons and light neutralinos. We find that the supersymmetric branching ratios are strongly suppressed within the MSSM with minimal flavor violation, and that no bounds on the neutralino mass can be inferred from experimental data, i.e., a massless neutralino is allowed. The branching ratios for kaon and B meson decays into light neutralinos may, however, be enhanced when one allows for nonminimal flavor violation. We find new constraints on the MSSM parameter space for such scenarios and discuss prospects for future kaon and B meson experiments. Finally, we comment on the search for light neutralinos in monojet signatures at the Tevatron and at the LHC.
We propose a new method to discover light top squarks (stops) in the co-annihilation region at the Large Hadron Collider (LHC). The bino-like neutralino is the lightest supersymmetric particle (LSP) and the lighter stop is the next-to-LSP. Such scenarios can be consistent with electroweak baryogenesis and also with dark matter constraints. We consider the production of two stops in association with two b−quarks, including pure QCD as well as mixed electroweak-QCD contributions. The stops decay into a charm quark and the LSP. For a higgsino-like light chargino the electroweak contributions can exceed the pure QCD prediction. We show the size of the electroweak contributions as a function of the stop mass and present the LHC discovery reach in the stop-neutralino mass plane.
Publisher's Note: Sneutrino as the lightest supersymmetric particle in B 3 minimal supergravity models and signals at the LHC [Phys. Rev. D 79, 035003 (2009)]
We investigate the discovery potential of the LHC experiments for R-parity violating supersymmetric models with a stau as the lightest supersymmetric particle (LSP) in the framework of minimal supergravity. We classify the final states according to their phenomenology for different R-parity violating decays of the LSP. We then develop event selection cuts for a specific benchmark scenario with promising signatures for the first beyond the Standard Model discoveries at the LHC. For the first time in this model, we perform a detailed signal over background analysis. We use fast detector simulations to estimate the discovery significance taking the most important Standard Model backgrounds into account. Assuming an integrated luminosity of 1 fb −1 at a center-of-mass energy of √ s = 7 TeV, we perform scans in the parameter space around the benchmark scenario we consider.We then study the feasibility to estimate the mass of the stau-LSP. We briefly discuss difficulties, which arise in the identification of hadronic tau decays due to small tau momenta and large particle multiplicities in our scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.