A: Performance of triple GEM prototypes in strong magnetic field has been evaluated by means of a muon beam at the H4 line of the SPS test area at CERN. Data have been reconstructed and analyzed offline with two reconstruction methods: the charge centroid and the micro-Time-Projection-Chamber exploiting the charge and the time measurement respectively. A combination of the two reconstruction methods is capable to guarantee a spatial resolution better than 150 µm in magnetic field up to a 1 T.
An innovative Cylindrical Gas Electron Multiplier (CGEM) detector is under construction for the upgrade of the inner tracker of the BESIII experiment. A novel system has been worked out for the readout of the CGEM detector, including a new ASIC, dubbed TIGER -Torino Integrated GEM Electronics for Readout, designed for the amplification and digitization of the CGEM output signals. The data output by TIGER are collected and processed by a first FPGA-based module, GEM Read Out Card, in charge of configuration and control of the front-end ASICs. A second FPGA-based module, named GEM Data Concentrator, builds the trigger selected event packets containing the data and stores them via the main BESIII data acquisition system. The design of the electronics chain, including the power and signal distribution, will be presented together with its performance.
BESIII is a multipurpose spectrometer optimized for physics in the tau-charm energy region. Both the detector and the accelerator are undergoing an upgrade program, that will allow BESIII to run for 5 to 10 more years. A major upgrade is the replacement of the inner drift chamber with a new detector based on Cylindrical Gas Electron Multipliers to improve both the secondary vertex reconstruction and the radiation tolerance. The CGEM-IT will be composed of three coaxial layers of cylindrical triple GEMs, operating in an Ar + iC4H10 (90:10) gas mixture with field and gain optimized to minimize the spatial resolution. The new detector is readout with innovative TIGER electronics produced in 110 nm CMOS technology. The front-end is a custom designed 64 channel ASIC featuring a fully digital output and operated in trigger-less mode. It can provide analog charge and time measurements with a TDC time resolution better than 100 ps, which will allow operating in μTPC mode. With planar prototypes, we measured an unprecedented spatial resolution below 150 μm in a 1 Tesla magnetic field in a wide range of incident angles of the incoming particle. Before the installation inside BESIII, foreseen in 2021, a long standalone data taking is ongoing at the Institute of High Energy Physics in Beijing; currently, the first two cylindrical chambers are available for the test, and are used to complete the integration between the detector and the electronics and to assess the required performance. In this proceeding, a description of the CGEM-IT project, the TIGER features and performance, and the results of the analysis of first cosmic ray data taking will be presented. Focus will be given on the strip analysis, from which it is possible to measure the basic properties of the detector, and the cluster analysis, where a comparison with the results with planar prototypes will be discussed. The first preliminary results on efficiency and spatial resolution will be also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.