Reactive oxygen species contribute to glomerular damage and proteinuria. In this study, we show that cultured human podocytes produce superoxide in response to extracellular adenosine triphosphate (ATP), and we identified the oxidases involved in this process. Adenosine triphosphate (10-4 M for 4 hr) raised superoxide production from 1.28 +/- 0.15 to 2.67 &/- 0.34 nmol/mg protein/min. Studies with podocyte homogenates revealed activation of both nicotinamide adenine dinucleotide (NADH; from 2.65 +/- 0.23 to 7.43 +/- 0.57) and nicotinamide adenine dinucleotide phosphate (NADPH) dependent oxidases [from 1.74 +/- 0.13 to 4.05 +/- 0.12 (nmol O2/mg protein/min)] by ATP. Activity of xanthine-oxidases was low and unchanged by ATP. Activation of the plasma-membrane bound NAD(P)H oxidases by ATP was time and dose dependent. Reverse transcribed-polymerase chain reaction (RT-PCR) studies with primers derived from monocyte sequences amplified mRNA for the NADPH oxidase subunits p22phox, p47phox, gp91phox, and p67phox, and the latter was transiently increased by ATP. Experiments with actinomycin D and cycloheximide suggested that ATP modulates enzyme activity at the transcriptional and translational levels. In conclusion, NAD(P)H dependent, membrane associated oxidases represent the major superoxide source in human podocytes. Activation of NAD(P)H oxidase by ATP might be secondary to increased mRNA expression of the NADPH oxidase subunit gp67phox.
Podocytes are crucial for the permeability of the glomerular filtration barrier. In glomerular disease, however, reactive oxygen species (ROS) may be involved in podocyte injury and subsequent proteinuria. Here, we describe ROS-dependent gene induction in differentiated podocytes stimulated with H(2)O(2) or xanthine/xanthine-oxidase. Superoxide anions and H(2)O(2) increased mRNA and protein expression of GAS5 (growth arrest-specific protein 5) and CHOP (C/EBP homology protein). Cultured podocytes overexpressing CHOP showed increased generation of superoxide anions compared to controls. In addition, the expression of alpha(3)/beta(1) integrins, crucial for cell-matrix interaction of podocytes, was down-regulated, leading to increased cell-matrix adhesion and cell displacement. The altered cell-matrix adhesion was antagonized by the ROS scavenger 1,3-dimethyl-2-thiourea, and the increase in cell displacement could be mimicked by stimulating untransfected podocytes with puromycin, an inductor of ROS. We next performed immunohistochemical staining of human kidney tissue (normal, membranous nephropathy, focal segmental glomerulosclerosis, and minimal change nephropathy) as well as sections from rats with puromycin nephrosis, a model of minimal change nephropathy. CHOP was weakly expressed in podocytes of control kidneys but up-regulated in most proteinuric human kidneys and in rat puromycin nephrosis. Our data suggest that CHOP-via increased ROS generation-regulates cell-matrix adhesion of podocytes in glomerular disease.
The rate-limiting enzyme in branched-chain amino acid catabolism is branched-chain ketoacid dehydrogenase (BCKAD). In rats fed NH4Cl to induce acidemia, we find increased basal BCKAD activity as well as maximal activity in skeletal muscle. Concurrently, there is a > 10-fold increase in mRNAs of BCKAD subunits in skeletal muscle plus an increase in cardiac muscle but not in liver or kidney. There was no increase in mRNA for malate dehydrogenase or for cytosolic glyceraldehyde-3-phosphate dehydrogenase. Evaluation of the translation capacity of BCKAD mRNAs in muscle of acidemic rats yielded more immunoreactive BCKAD whether the proteins were synthesized from muscle RNA using rabbit reticulocyte lysate or directly using postmitochondrial homogenates. Although the RNA from muscle of acidemic rats yielded twice as much BCKAD protein, we found no net increase in mitochondrial BCKAD protein in muscle by Western blotting. Because there is increased proteolysis in muscle of rats with acidemia, the increase in mRNA might be a mechanism to augment BCKAD synthesis and activity in muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.