Coherent control of ensembles of light emitters by means of multi-wave mixing processes is key for the realization of high capacity optical quantum memories and information processing devices. In this context, semiconductor quantum dots placed in optical microcavities represent excellent candidates to explore strong light-matter interactions beyond the limits of perturbative non-linear optics and control the unitary evolution of optically driven quantum systems. In this work, we demonstrate that a sequence of two optical picosecond pulses can be used to establish coherent control over the phase evolution of the ensemble of charged excitons (trions) in (In,Ga)As quantum dots independent of their initial quantum state. Our approach is based on coherent transfer between degenerate multi-wave-mixing signals in the strong field limit where Rabi rotations in multi-level systems take place. In particular, we use the two-pulse photon echo sequence to uncover the coherent dynamics of the trion ensemble, whereas the areas of two additional control pulses serve as tuning knobs for adjusting the magnitude and timing of the coherent emission. Furthermore, we make use of the spin degeneracy of ground and excited state of charged quantum dots to control the polarization state of the emitted signal. Surprisingly, we reveal that the use of optical control pulses, whose durations are comparable to the dephasing time of the ensemble, lifts the temporal degeneracy between wave-mixing processes of different order. This phenomenon is manifested in a significant modification of the temporal shape of the coherent optical response for strong optical fields, which is in accordance with the developed theoretical model. Lifting the temporal degeneracy allows to smoothly trace the transition from the perturbative to the regime of Rabi rotations and opens up new possibilities for the optical investigation of complex energy level structures in so far unexplored material systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.