No abstract
The study of the spin-parity and tensor structure of the interactions of the recently discovered Higgs boson is performed using the H → ZZ; Zγ Ã ; γ Ã γ Ã → 4l, H → WW → lνlν, and H → γγ decay modes. The full data set recorded by the CMS experiment during the LHC run 1 is used, corresponding to an integrated luminosity of up to 5.1 fb −1 at a center-of-mass energy of 7 TeV and up to 19.7 fb −1 at 8 TeV. A wide range of spin-two models is excluded at a 99% confidence level or higher, or at a 99.87% confidence level for the minimal gravitylike couplings, regardless of whether assumptions are made on the production mechanism. Any mixed-parity spin-one state is excluded in the ZZ and WW modes at a greater than 99.999% confidence level. Under the hypothesis that the resonance is a spin-zero boson, the tensor structure of the interactions of the Higgs boson with two vector bosons ZZ, Zγ, γγ, and WW is investigated and limits on eleven anomalous contributions are set. Tighter constraints on anomalous HVV interactions are obtained by combining the HZZ and HWW measurements. All observations are consistent with the expectations for the standard model Higgs boson with the quantum numbers J PC ¼ 0 þþ .
Solid state photodetectors like silicon photomultipliers (SiPMs) are playing an important role in several fields of medical imaging, life sciences and high energy physics. They are able to sense optical photons with a single photon detection time precision below 100 ps, making them ideal candidates to read the photons generated by fast scintillators in time of flight positron emission tomography (TOF-PET). By implementing novel high-frequency readout electronics, it is possible to perform a completely new evaluation of the best timing performance achievable with state-of-the-art analog-SiPMs and scintillation materials. The intrinsic SiPM single photon time resolution (SPTR) was measured with Ketek, HPK, FBK, SensL and Broadcom devices. Also, the best achieved coincidence time resolution (CTR) for these devices was measured with LSO:Ce:Ca of mm3 and mm3 size crystals. The intrinsic SPTR for all devices ranges between 70 ps and 135 ps FWHM when illuminating the entire mm2 or mm2 area. The obtained CTR with LSO:Ce:Ca of mm3 size ranges between 58 ps and 76 ps FWHM for the SiPMs evaluated. Bismuth Germanate (BGO), read out with state of-the-art NUV-HD SiPMs from FBK, achieved a CTR of 158 ps and 277 ps FWHM for mm3 and mm3 crystals, respectively. Other BGO geometries yielded 167 3 ps FWHM for mm3 and 235 5 ps FWHM for mm3 also coupled with Meltmount (n = 1.582) and wrapped in Teflon. Additionally, the average number of Cherenkov photons produced by BGO in each 511 keV event was measured to be 17 3 photons. Based on this measurement, we predict the limits of BGO for ultrafast timing in TOF-PET with Monte Carlo simulations. Plastic scintillators (BC422, BC418), BaF2, GAGG:Ce codoped with Mg and CsI:undoped were also tested for TOF performance. Indeed, BC422 can achieve a CTR of 35 2 ps FWHM using only Compton interactions in the detector with a maximum deposited energy of 340 keV. BaF2 with its fast cross-luminescence enables a CTR of 51 5 ps FWHM when coupled to VUV-HD SiPMs from FBK, with only ∼22% photon detection efficiency (PDE). We summarize the measured CTR of the various scintillators and discuss their intrinsic timing performance.
Scintillator based radiation detectors readout by SiPMs successively break records in their reached time resolution. Nevertheless, new challenges in time of flight positron emission tomography (TOF-PET) and high energy physics are setting unmatched goals in the 10 ps range. Recently it was shown that high frequency (HF) readout of SiPMs significantly improves the measured single photon time resolution (SPTR), allowing to evaluate the intrinsic performance of large area devices; e.g. FBK NUV-HD SiPMs of 4 × 4 mm 2 area and 40 µm single photon avalanche diode (SPAD) size achieve 90 ps FWHM. In TOF-PET such readout allows to lower the leading edge detection threshold, so that the fastest photons produced in the crystal can be utilized. This is of utmost importance if a high SPTR and prompt Cherenkov light generated by the hot-recoil electron upon 511 keV photoabsorption should improve timing. This paper shows that high-frequency bipolar transistor readout of state-of-the-art SiPMs coupled to high-performance scintillators can substantially improve the best achievable coincidence time resolution (CTR) in TOF-PET. In this context a CTR of 158 ± 3 ps FWHM with 2 × 2 × 3 mm 3 BGO crystals coupled to FBK SiPMs is achieved. This faint Cherenkov signal is as well present in standard LSO scintillators, which together with low SPTR values (<90 ps FWHM) improves the CTR of 2 × 2 × 3 mm 3 LSO:Ce:Ca coupled to FBK NUV-HD 4 × 4 mm 2 with 25 µm SPAD size to 61 ± 2 ps FWHM using HF-electronics, as compared to 73 ± 2 ps when readout by the NINO front-end ASIC. When coupling the LSO:Ce:Ca crystals to FBK NUV-HD SiPMs of 4 × 4 mm 2 and 40 µm SPAD size, using HF-electronics, a CTR of even 58 ± 3 ps for 2 × 2 × 3 mm 3 and 98 ± 3 ps for 2 × 2 × 20 mm 3 is achieved. This new experimental data will allow to further discuss the timing limits in scintillator-based detectors.
The coincidence time resolution (CTR) of scintillator based detectors commonly used in positron emission tomography is well known to be dependent on the scintillation decay time (τd) and the number of photons detected (n'), i.e. CTR proportional variant √τd/n'. However, it is still an open question to what extent the scintillation rise time (τr) and other fast or prompt photons, e.g. Cherenkov photons, at the beginning of the scintillation process influence the CTR. This paper presents measurements of the scintillation emission rate for different LSO type crystals, i.e. LSO:Ce, LYSO:Ce, LSO:Ce codoped Ca and LGSO:Ce. For the various LSO-type samples measured we find an average value of 70 ps for the scintillation rise time, although some crystals like LSO:Ce codoped Ca seem to have a much faster rise time in the order of 20 ps. Additional measurements for LuAG:Ce and LuAG:Pr show a rise time of 535 ps and 251 ps, respectively. For these crystals, prompt photons (Cherenkov) can be observed at the beginning of the scintillation event. Furthermore a significantly lower rise time value is observed when codoping with calcium. To quantitatively investigate the influence of the rise time to the time resolution we measured the CTR with the same L(Y)SO samples and compared the values to Monte Carlo simulations. Using the measured relative light yields, rise- and decay times of the scintillators we are able to quantitatively understand the measured CTRs in our simulations. Although the rise time is important to fully explain the CTR variation for the different samples tested we determined its influence on the CTR to be in the order of a few percent only. This result is surprising because, if only photonstatistics of the scintillation process is considered, the CTR would be proportional to the square root of the rise time. The unexpected small rise time influence on the CTR can be explained by the convolution of the scintillation rate with the single photon time resolution (SPTR) of the photodetector and the photon travel spread (PTS) in the crystal. The timing benefits of prompt photons at the beginning of the scintillation process (Cherenkov etc) are further studied, which leads to the conclusion that the scintillation rise time, SPTR and PTS have to be lowered simultaneously to fully profit from these fast photons in order to improve the CTR significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.