A generalized formulation is developed for nonlinear acoustic solitons in three-component such as dust-ion-electron and electron-positron-ion plasmas with the charge of each species being unspecified. The heavy, cold charged particles (ions or dust particles) are treated as a fluid while the light, hot components are described by the kinetic Vlasov equation with separate velocity distributions which can be of j function or highly nonthermal (non-monotonic) distributions. The model is also applicable for two-component such as ion-electron plasmas with two different temperatures for electrons. The generalized dispersion relation for acoustic waves and the Korteweg-de Vries equations as well as the Sagdeev potential are derived for various models with different combinations of velocity distributions. The parameter regimes for the existence of acoustic solitons are analyzed and examples of nonlinear solutions are illustrated. The polarity of electric potential is found to exhibit anomaly for highly nonthermal cases.
The comment questions the formulation of the κ velocity distribution function used in our paper as compared to a slightly different form used by the authors. The difference in the distribution function necessarily leads to different number densities, thermal pressures, etc. We show that the restriction with their distribution function is that the macroscopic temperature (or average kinetic energy) is the same for all spatially uniform systems with a family of κ distributions including the Maxwellian case. The distribution function used in our paper and widely adopted in various studies of nonthermal systems, however, does not impose such a constraint; in particular, the temperature has κ dependence reflecting the kinetic nature of different statistical systems. The points made in the comment are trivial and misleading.
<p>Alluvial estuaries along the west coast of Taiwan play as habitats for several endangered species. Wetlands are widely scattered over the coastline, including two international-level and forty national-level sites. To understand their evolutions of erosion and siltation processes associated with coastal current and hydrological regime, we analyze 21 major wetlands by observing their interannual changes exhibited in the multiyear satellite images. We utilize Sentinel-2 multispectral data for digital elevation model (DEM) inversion. All low cloud-coverage images are first collected, and the intertidal topography is calculated through waterline detection, image stacking, and marking the tidal range by the DTU16 tide model. Temporal changes in topography are revealed by the reconstruction of DEM on a two-year rolling update. The quality of DEM is verified at an accuracy of sub-meter level, by the multibeam echosounder during high tide. We find that the groin effect and artificially nourished beach are the main causes of sedimentation, while the erosions commonly co-exist near the upstream of the ocean current.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.