Two studies were conducted to evaluate the effects of postweaning management of British crossbred heifers on growth and reproduction. In Exp. 1, 239 spring-born, crossbred heifers were stratified by weaning BW (234 ± 1 kg) and allotted randomly to 1 of 2 treatments. Treatments were fed at a rate equivalent to 1.14 kg/d while grazing dormant forage (6.5% CP and 80% NDF, DM basis) and were 1) 36% CP containing 36% RUP (36RUP) or 2) 36% CP containing 50% RUP (50RUP). Supplementation was initiated in February (1995 and 1996) or November (1997 and 1998) and terminated at the onset of breeding season (mid May). Heifers were weighed monthly up to breeding and again at time of palpation. After timed AI, heifers were exposed to breeding bulls for 42 ± 8 d. In Exp. 2, 191 spring-born, crossbred heifers were stratified by weaning BW to treatments. Heifer development treatments were 1) pasture developed and fed 0.9 kg/day of a 36% CP supplement containing 36% RUP (36RUP), 2) pasture developed and fed 0.9 kg/day of a 36% CP supplement containing 50% RUP (50RUP), and 3) corn silage-based growing diet in a drylot (DRYLOT). Heifers receiving 36RUP and 50RUP treatments were developed on dormant forage. Treatments started in February and ended at the onset of a 45-d breeding season in May. Heifer BW and hip height were taken monthly from initiation of supplementation until breeding and at pregnancy diagnosis. In Exp. 1, BW was not different (P ≥ 0.27) for among treatments at all measurement times. However, 50RUP heifers had greater (P = 0.02; 80 and 67%) pregnancy rates than 36RUP heifers. In Exp. 2, DRYLOT heifers had greater (P < 0.01) BW at breeding than 36RUP or 50RUP developed heifers. However, BW at pregnancy diagnosis was not different (P = 0.24) for between treatments. Pregnancy rates tended to be greater (P = 0.10) for 50RUP heifers than 36RUP and DRYLOT. Net return per heifer was US$99.71 and $87.18 greater for 50RUP and 36RUP heifers, respectively, compared with DRYLOT heifers due to differences in pregnancy and development costs. Retention rate after breeding yr 3 and 4 was greatest (P ≤ 0.01) for 50RUP heifers. Thus, increasing the supply of MP by increasing the proportion of RUP in supplements fed to heifers on dormant forage before breeding increased pregnancy rates, cow herd retention, and net return compared with heifers fed in drylot.
Body condition score is used as a management tool to predict competency of reproduction in beef cows. Therefore, a retrospective study was performed to evaluate association of BCS at calving with subsequent pregnancy rate, days to first postpartum ovulation, nutrient status (assessed by blood metabolites), and calf BW change in 2- and 3-yr-old cows (n = 351) managed and selected to fit their environment of grazing native range over 6 yr at the Corona Range and Livestock Research Center, Corona, NM. Cows were managed similarly before calving, without manipulation of management, to achieve predetermined BCS at parturition. Palpable BCS (scale of 1 to 9) were determined by 2 experienced technicians before calving. Cows were classified to 1 of 3 BCS groups prior calving: BCS 4 (mean BCS = 4.3 ± 0.02), 5 (mean BCS = 5.0 ± 0.03), or 6 (mean BCS = 5.8 ± 0.06). Cows were weighed weekly after calving and serum was collected once weekly (1 yr) or twice weekly (5 yr) for progesterone analysis to estimate first postpartum ovulation beginning 35 d postpartum. Year effects also were evaluated, with years identified as either above or below average precipitation. Days to first postpartum ovulation did not differ among calving BCS groups (P = 0.93). Pregnancy rates were not influenced by calving BCS (P = 0.83; 92%, 91%, 90% for BCS 4, 5, and 6, respectively). Days to BW nadir was not influenced by BCS at calving (P = 0.95). Cow BW was different at all measuring points (P < 0.01) with BCS 6 cows having the heaviest BW and cows with BCS 4 the lightest. Cows with calving BCS 4 and 5 lost more (P = 0.06) BW from the initiation of the study to the end of breeding than cows with BCS 6. However, cow BW change at all other measurement periods was not different (P ≥ 0.49) among calving BCS groups. Serum glucose and NEFA concentrations were not influenced by calving BCS (P ≥ 0.51). Calf BW at birth (P = 0.60), branding (55-d BW; P = 0.76), and weaning (205-d BW; P = 0.60) were not impacted by cow calving BCS. Body condition score did not influence overall pregnancy rates, indicating that young cows can have a reduced BCS and still be reproductively punctual. Therefore, these results indicate that reproductive performance of young cows with reduced BCS may not be affected when managed in extensive range conditions.
Cows in negative energy balance after calving often have reduced reproductive performance, which is mediated by metabolic signals. The objective of these studies was to determine the association of serum metabolites, days to first postpartum ovulation, milk production, cow BW change, BCS, and calf performance with conception date in spring-calving 2- and 3-yr-old beef cows grazing native range. In Exp. 1, cows were classified by conception date in a 60-d breeding season as early (EARLY; conceived in first 15 d of breeding) or late conception (LATE; conceived during the last 45 d of breeding). Beginning on d 35 postpartum, blood samples were collected twice per week for serum metabolite analysis and progesterone analysis to estimate days to resumption of estrous cycles. As a chute-side measure of nutrient status and glucose sufficiency, whole-blood β-hydroxybutyrate (BHB) concentrations were measured 14 ± 2 d before breeding. In Exp. 2, cows were classified by subsequent calving date resulting from a 55 ± 2 d breeding season as conceiving either early (EARLY; conceived in first 15 d of breeding) or late (LATE; conceived during the remaining breeding season). Blood samples were collected in 2 periods, 30 ± 4 d before calving and 14 ± 3 d before the initiation of breeding, to determine circulating concentrations of IGF-I and BHB. In Exp. 1, BHB and serum glucose concentrations were less (P ≤ 0.04) in EARLY cows than LATE cows. Serum insulin concentrations were greater (P = 0.03) in EARLY cows relative to LATE cows. Milk production and composition did not differ (P ≥ 0.24) by conception date groups. In Exp. 2, cow age × sample period × conception date interaction (P < 0.01) occurred for serum BHB concentrations. Serum BHB concentrations were similar (P > 0.10) for 2-yr-old cows (in greater nutritional plane compared with Exp. 1) regardless of their conception date classification and sampling period. However, precalving serum BHB concentrations were greater (P < 0.01) for LATE than EARLY in 3-yr-old cows with no difference (P = 0.86) at prebreeding. Serum IGF-1 concentrations were greater (P < 0.01) for EARLY cows relative to LATE cows at precalving and prebreeding. This study indicates that blood BHB concentrations during times of metabolic dysfunctions may provide a more sensitive indicator of energy status than body condition, predicting rebreeding competence in young beef cows as measured by interval from calving to conception.
Supplementing CP and propionate salts (PS) may improve economic returns in young range beef cows by increasing the dietary supply of glucogenic precursors. A 3-yr study conducted at Corona Range and Livestock Research Center (Corona, NM) from February to mid-July in 2005 (n = 80), 2006 (n = 81), and 2007 (n = 80) evaluated days to first estrus, calf weaning weight, BW change, and metabolic responses in 2- and 3-yr-old postpartum cows grazing native range. Cows were individually fed one of three 36% CP supplement treatments after parturition, with increasing glucogenic potential (GP) supplied by RUP and PS. Supplements were isoenergetic and fed at a rate of 908 g/cow per day twice weekly. Supplementation was initiated 7 d after calving and continued for an average of 95 d. Supplement treatments provided 1) 328 g of CP, 110 g of RUP and 0 g of PS (PS0); 2) 328 g of CP, 157 g of RUP, and 40 g of PS (PS40); or 3) 329 g of CP, 158 g of RUP, and 80 g of PS (PS80). Ultimately, PS0, PS40, and PS80 provided 44, 93, and 124 g of GP, respectively. Body weight was recorded weekly and serum was collected twice weekly for progesterone analysis to estimate days to first estrus. Cows were exposed to bulls for 60 d or less beginning in mid-May. Days to first estrus exhibited a quadratic (P = 0.06) response to GP resulting from the fewest days to first estrus with the consumption of PS40. Pregnancy rates were 88, 96, and 94% for cows fed PS0, PS40, and PS80, respectively (P = 0.11). Total kilograms of calf weaned per cow exposed to bulls for the supplementation and following year increased quadratically (P = 0.09). However, supplement did not affect milk composition or yield (P ≥ 0.53). Serum acetate half-life decreased linearly (P = 0.08) with increasing GP in 2007. Predicted margins were the greatest (quadratic; P = 0.03) for cows fed PS40. Even though supplement costs were greater for PS40 and PS80, cows fed PS40 had increased profits ($33.47/cow) compared with cows fed PS0 and PS80. This study implies that young postpartum cows fed additional glucogenic precursors may have improved reproductive efficiency and may wean more calf weight per cow exposed to breeding.
On the Ground • The American beef industry is paying more attention to cattle temperament, but studies examining relationships between temperaments and grazing behavior or animal performance on rangelands are limited. • We studied range beef cow temperaments using the behavioral syndromes framework. Cows classified into behavioral type groups on the basis of a suite of correlated behaviors showed contrasting rangeland use patterns and different reproductive efficiency. These differences resulted in temperament-related culling rates over time. • We argue that the behavioral syndromes conceptual framework could be a valuable tool to advance current understanding about how cattle temperaments are related to grazing patterns and animal performance on rangeland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.