A new disease of potatoes, tentatively named zebra chip (ZC) because of the intermittent dark and light symptom pattern in affected tubers which is enhanced by frying, was first found in Mexico in 1994 and in the southwestern United States in 2000. The disease can cause severe economic losses in all market classes of potatoes. The cause of ZC has been elusive, and only recently has been associated with ‘Candidatus Liberibacter’ sp. Field samples of potato plants were collected from several locations in the United States, Mexico, and Guatemala to determine transmission to potato and tomato by grafting of ZC-infected scions and psyllid feeding. The disease was successfully transmitted, through up to three generations, by sequential top- and side-grafting ZC-infection scions to several potato cultivars and to tomato. The disease was also successfully transmitted to potato and tomato plants in greenhouse experiments by potato psyllids collected from potato plants naturally affected with ZC. Transmission electron microscopic observation of ZC-affected tissues revealed the presence of bacteria-like organisms (BLOs) in the phloem of potato and tomato plants inoculated by grafting and psyllid feeding. The BLOs were morphologically similar in appearance to BLOs associated with other plant diseases. Polymerase chain reaction (PCR) amplified 16S rDNA sequences from samples representing different geographic areas, including the United States, Mexico, and Guatemala, were almost identical to the 16S rDNA of ‘Ca. L. solanacearum’ previously reported from solanaceous plants in New Zealand and the United States. Two subclades were identified that differed in two single base-pair substitutions. New specific primers along with an innovative rapid PCR were developed. This test allows the detection of the bacteria in less than 90 min. These data confirm the association of ‘Ca. L. solanacearum’ with potatoes affected by ZC in the United States, Mexico, and Guatemala.
Aims: To determine the characteristics of bacteria associated with the blackleg disease of potato in Brazil and compare them with species and subspecies of pectolytic Erwinia. Methods and Results: Biochemical and physiological characteristics of 16 strains from blackleg-infected potatoes in State of Rio Grande do Sul, Brazil, were determined and differentiated them from all the E. carotovora subspecies and E. chrysanthemi. Pathogenicity and maceration ability of the Brazilian strains were greater than those of E. carotovora subsp. atroseptica, the causal agent of potato blackleg in temperate zones. Analyses of serological reaction and fatty acid composition confirmed that the Brazilian strains differed from E. carotovora subsp. atroseptica, but the sequence of 16S rDNA gene and the 16S-23S intergenic spacer (IGS) region confirmed the Brazilian strains as pectolytic Erwinia. Restriction analysis of the IGS region differentiated the Brazilian strains from the subspecies of E. carotovora and from E. chrysanthemi. A unique SexAI restriction site in the IGS region was used as the basis for a primer to specifically amplify DNA from the Brazilian potato blackleg bacterium in PCR. Conclusions: The bacterium that causes the blackleg disease of potato in Brazil differs from E. carotovora subsp. atroseptica, the blackleg pathogen in temperate zones. It also differs from other subspecies of E. carotovora and from E. chrysanthemi and warrants status as a new subspecies, which would be appropriately named E. carotovora subsp. brasiliensis. Significance and Impact of the Study: The blackleg disease of potato is caused by a different strain of pectolytic Erwinia in Brazil than in temperate potato-growing regions. The Brazilian strain is more virulent than E. carotovora subsp. atroseptica, the usual causal agent of potato blackleg.
Pectobacterium atrosepticum, P. carotovorum subsp. brasiliensis, P. carotovorum subsp. carotovorum, and P. wasabiae were detected in potato stems with blackleg symptoms using species- and subspecies-specific polymerase chain reaction (PCR). The tests included a new assay for P. wasabiae based on the phytase gene sequence. Identification of isolates from diseased stems by biochemical or physiological characterization, PCR, and multi-locus sequence typing (MLST) largely confirmed the PCR detection of Pectobacterium spp. in stem samples. P. atrosepticum was most commonly present but was the sole Pectobacterium sp. detected in only 52% of the diseased stems. P. wasabiae was most frequently present in combination with P. atrosepticum and was the sole Pectobacterium sp. detected in 13% of diseased stems. Pathogenicity of P. wasabiae on potato and its capacity to cause blackleg disease were demonstrated by stem inoculation and its isolation as the sole Pectobacterium sp. from field-grown diseased plants produced from inoculated seed tubers. Incidence of P. carotovorum subsp. brasiliensis was low in diseased stems, and the ability of Canadian strains to cause blackleg in plants grown from inoculated tubers was not confirmed. Canadian isolates of P. carotovorum subsp. brasiliensis differed from Brazilian isolates in diagnostic biochemical tests but conformed to the subspecies in PCR specificity and typing by MLST.
Gram-stain-negative, pectinolytic bacteria were repeatedly isolated from pear trees displaying symptoms of bleeding canker in China. Three strains, JS5 T , LN1 and QZH3, had identical 16S rRNA gene sequences that shared 99 % similarity to the type strain of Dickeya dadantii. Phylogenetic analysis of strains JS5 T , LN1 and QZH3 with isolates representing all species of the genus Dickeya and related Pectobacterium species supported their affiliation to Dickeya. Multi-locus sequence typing employing concatenated sequences encoding recA, fusA, gapA, purA, rplB, dnaX and the intergenic spacer illustrated a phylogeny which placed strains JS5 T , LN1 and QZH3 as a distinct clade, separate from all other species of the genus Dickeya. Average nucleotide identity values obtained in comparison with all species of the genus Dickeya supported the distinctiveness of strain JS5 T within the genus Dickeya. Additionally, all three strains were phenotypically distinguished from other species of the genus Dickeya by failing to hydrolyse casein, and by producing acids from (À)-D-arabinose, (+)melibiose, (+)raffinose, mannitol and myo-inositol, but not from 5-keto-D-gluconate or b-gentiobiose. The name Dickeya fangzhongdai sp. nov. is proposed to accommodate these strains; the type strain is JS5 T
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.