This study aimed to investigate the in silico biofilm production ability of Staphylococcus aureus strains isolated from milking parlor environments on dairy farms from São Paulo, Brazil. The Staph. aureus isolates were obtained from 849 samples collected on dairy farms, as follows: milk from individual cows with subclinical mastitis or history of the disease (n=220); milk from bulk tank (n=120); surfaces of milking machines and utensils (n=389); and milk handlers (n=120). Thirty-one Staph. aureus isolates were obtained and categorized as pulsotypes by pulsed-field gel electrophoresis and submitted to assays for biofilm formation on polystyrene, stainless steel, rubber, and silicone surfaces. Fourteen (45.2%) pulsotypes were considered producers of biofilm on the polystyrene microplate assay, whereas 13 (41.9%) and 12 (38.7%) pulsotypes were biofilm producers on stainless steel and rubber, respectively. None of the pulsotypes evaluated produced biofilms on silicone. Approximately 45% of Staph. aureus pulsotypes isolated from different sources on dairy farms showed the ability to produce biofilms in at least one assay, indicating possible persistence of this pathogen in the milking environment. The potential involvement of Staph. aureus in subclinical mastitis cases and its occurrence in milk for human consumption emphasize the need to improve hygiene practices to prevent biofilm formation on the farms studied.
This research aimed to evaluate the occurrence of Staphylococcus aureus isolates in milk and in the milking environment of 10 small-scale farms (<400 L/d) located in the regions of Franca and Ribeirão Preto, state of São Paulo, Brazil. Two-hundred twenty samples of milk were collected from individual cows, along with 120 samples from bulk tank milk, 389 samples from milking equipment and utensils (teat cups, buckets, and sieves), and 120 samples from milkers' hands. Fifty-six Staph. aureus strains were isolated from 849 analyzed samples (6.6%): 12 (5.5%) from milk samples of individual cows, 26 (21.7%) from samples of bulk tank milk, 14 (3.6%) from samples collected from equipment and utensils, and 4 (3.3%) from samples from milkers' hands. Pulsed-field gel electrophoresis typing of the 56 Staph. aureus isolates by SmaI restriction enzyme resulted in 31 profiles (pulsotypes) arranged in 12 major clusters. Results of this study indicate a low incidence, but wide distribution of Staph. aureus strains isolated from raw milk collected from individual cows and surfaces of milkers' hands and milking equipment in the small-scale dairy farms evaluated. However, the high percentage of bulk milk samples found with Staph. aureus is of public health concern because raw, unprocessed milk is regularly consumed by the Brazilian population.
This research investigated the removal of adherent cells of 4 strains of Staphylococcus aureus and 1 Listeria monocytogenes strain (previously isolated from dairy plants) from polystyrene microtiter plates using peracetic acid (PAA, 0.5%) for 15, 30, 60, and 120 s, and the inactivation of biofilms formed by those strains on stainless steel coupons using the same treatment times. In the microtiter plates, PAA removed all S. aureus at 15 s compared with control (no PAA treatment). However, L. monocytogenes biofilm was not affected by any PAA treatment. On the stainless steel surface, epifluorescence microscopy using LIVE/DEAD staining (BacLight, Molecular Probes/Thermo Fisher Scientific, Eugene, OR) showed that all strains were damaged within 15 s, with almost 100% of cells inactivated after 30 s. Results of this trial indicate that, although PAA was able to inactivate both S. aureus and L. monocytogenes monospecies biofilms on stainless steel, it was only able to remove adherent cells of S. aureus from polystyrene microplates. The correct use of PAA is critical for eliminating biofilms formed by S. aureus strains found in dairy plants, although further studies are necessary to determine the optimal PAA treatment for removing biofilms of L. monocytogenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.