This paper discusses salient aspects of severe-accident-related recriticality modeling and analysis in the Advanced Neutron Source (ANS) reactor. The development of an analytical capability using the KENO V.A-SCALE system is described including evaluation of suitable nuclear cross-section sets to account for the effects of system geometry, mixture temperature, material dispersion and other thermal-hydraulic conditions. Benchmarking and validation efforts conducted with KENO V.A-SCALE and other neutronic codes against critical experiment data are described. Potential deviations and biases resulting from use of the 16-group Hansen-Roach library are shown. A comprehensive test matrix of calculations to evaluate the threat of a recriticality event in the ANS is described. Strong dependencies on geometry, material constituents, and thermal-hydraulic conditions are described. The introduction of designed mitigative features is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.