Single-crystalline with perfect hexagonal-shaped ZnO nanowires and nanorods, possessing the Zn-terminated (0001) facets bounded with the six-crystallographic equivalent [0110] surfaces, have been grown on Au-coated silicon substrate via thermal evaporation method using the metallic zinc powder in presence of oxygen. The detailed structural analyses reveal that the obtained nanostructures are single-crystalline with the wurtzite hexagonal phase and are preferentially oriented in the c-axis, [0001] direction. Raman spectra exhibit a sharp and strong optical phonon E2 mode at 437 cm(-1) further confirms the good crystal quality with wurtzite hexagonal crystal structure for the deposited products. The room-temperature photoluminescence (PL) spectra, for both the structures, showed a sharp and strong UV emission with a suppressed green emission, indicating the good optical properties for the as-grown nanostructures.
In this paper, we report a successful growth of zinc oxide nanowire networks by simple thermal evaporation process using metallic zinc powder in the presence of oxygen. The morphological investigations of the synthesized nanowire networks are conducted by using field emission scanning electron microscopy (FESEM) which reveals that the grown products are in high-density over the whole substrate surface and possessing nanowire networks like structures. The structural and compositional properties of the grown nanowire networks are analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), respectively which confirm that the synthesized products are well-crystalline, with wurtzite hexagonal phase ZnO. The as-grown ZnO nanowire networks grown on silicon substrate are utilized to fabricate n-ZnO/p-Si heterojunction diode and presented in this paper. The I-V characteristics of the fabricated heterojunction diode at different temperatures (77 K-477 K) are also investigated. High values of quality factor, which are obtained from this study, indicate a non-ideal behavior of the fabricated device. The mean barrier height of -0.84 eV is also estimated and presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.