In this paper, a design method for an intermediate die was developed to manufacture a hollow linear motion guide rail in mandrel drawing process based on virtual die method and backward tracing scheme. FE simulations and mandrel drawing experiments using Mn55Cr carbon steel were performed to prove the effectiveness of the proposed design method. Results of FE simulations and experiments showed that the proposed design method could lead to drawn products with sound shape and the highest dimensional precision.
One of the most important aspects in multi-stage shape drawing is the proper design of the intermediate dies especially to provide adequate metal distribution. In the current study, a method for designing the intermediate dies has been developed to manufacture hollow linear motion guide rails by multi-stage shape drawing. The design method is based on the modified virtual die method. The effectiveness of the proposed design method was verified by FE-simulations and experiments using Mn55Cr carbon steel. From the results of the FE-simulations and the experiments, the proposed design method led to a drawn product with a sound shape. The dimensional tolerances of the product were within the allowable specified tolerances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.