Plant homeodomain finger 2 (PHF2) has a role in epigenetic regulation of gene expression by demethylating H3K9-Me2. Several genome-wide studies have demonstrated that the chromosomal region including the PHF2 gene is often deleted in some cancers including colorectal cancer, and this finding encouraged us to investigate the tumor suppressive role of PHF2. As p53 is a critical tumor suppressor in colon cancer, we tested the possibility that PHF2 is an epigenetic regulator of p53. PHF2 was associated with p53, and thereby, promoted p53-driven gene expression in cancer cells under genotoxic stress. PHF2 converted the chromatin that is favorable for transcription by demethylating the repressive H3K9-Me2 mark. In an HCT116 xenograft model, PHF2 was found to be required for the anticancer effects of oxaliplatin and doxorubicin. In PHF2-deficient xenografts, p53 expression was profoundly induced by both drugs, but its downstream product p21 was not, suggesting that p53 cannot be activated in the absence of PHF2. To find clinical evidence about the role of PHF2, we analyzed the expressions of PHF2, p53 and p21 in human colon cancer tissues and adjacent normal tissues from patients. PHF2 was downregulated in cancer tissues and PHF2 correlated with p21 in cancers expressing functional p53. Colon and stomach cancer tissue arrays showed a positive correlation between PHF2 and p21 expressions. Informatics analyses using the Oncomine database also supported our notion that PHF2 is downregulated in colon and stomach cancers. On the basis of these findings, we propose that PHF2 acts as a tumor suppressor in association with p53 in cancer development and ensures p53-mediated cell death in response to chemotherapy.
Hypoxia-inducible factor-1a (HIF-1a) is destabilized via the ubiquitin-proteasome system. Thus HIF-1a expression is robustly upregulated by proteasome inhibition, but paradoxically its activity is reduced. In the present study, we investigated the mechanism underlying the paradoxical response of HIF-1a to proteasome inhibition. In both Hep3B and HEK293 cells, a proteasome inhibitor MG132 noticeably attenuated hypoxic induction of erythropoietin and VEGF mRNAs. MG132 inactivated HIF-1a C-terminal transactivation domain (CAD), independently of factor inhibiting HIF-1 (FIH) and inhibited p300 recruitment by HIF-1a. We next tested the possibility that CITED2 is involved in the HIF-1 inactivation. CITED2 was found to be degraded via the ubiquitin-proteasome system and thus was stabilized by proteasome inhibition. Both the activity and the p300 binding of HIF-1a were inhibited by CITED2 expression and recovered by CITED2 siRNA in the presence of MG132. These results suggest that CITED2 is stabilized by proteasome inhibition and inactivates HIF-1 by interfering with the HIF-1a-p300 interaction. This may be an important mode-of-action for proteasome inhibition-based cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.