The interactions between free surface waves and layers of cohesive sediments including wave height attenuation and mud movement are of great importance in coastal and marine engineering. In this study, the results from a new analytical model were compared with those from literature experimental works and analytical models in terms of wave height dissipation rate and mud velocity. It was found that the new model provided good agreements in the case of coexisting waves and currents, while the literature model of Ng (explained in Section 2 of the text) —assuming the mud layer as a highly viscous layer with high shear rates—matched well with the experimental data for high viscosity (mud viscosity, νm = O [0.01 m2/s]). In addition, it was found that the new model is able to successfully simulate particles velocity in the presence of co-current.
<p>The Black Sea is one of the largest enclosed seas in the world. More than 160 million people live in its coastal areas and large rivers flow into it, as &#160;the Danube, the Dniester, the Dnieper and the Don. The Danube river, located on the western coast, is the most important European waterway whose catchment area is shared by more than fifteen countries. Black sea coastal waters are also often characterized by high suspended sediment concentrations derived from coastal runoff and local sediment re-suspension from the river sources. Measuring coastal sediment transport in field situations is notoriously difficult and generally subject to great uncertainty, and model estimates are often used in practice.&#160;The specific objectives of the current study are to understand the present state of the western Black Sea, and to study current and wave dynamics with the assistance of state-of-the-art numerical models for simulating waves, currents, and their interactions with the sediment loads. We used the hydrodynamic model named SHYFEM, hard coupled with the Wavewatch III wave model for the current study, while the coupled Sedtrans05 model will be used in the future for sediment modeling. The numerical models are applied on an unstructured grid representing the western Black Sea and the Danube Delta through the use of triangular elements of different shapes and sizes.</p> <p>The simulations of the coupled SHYFEM-WW3 were compared with the significant wave heights (Hs) measured by the Jason-3 and Sentinel-3. Despite some discrepancies, SHYFEM-WW3 provides good agreements with the altimeter data. The preliminary comparison done on the basin scale application show better performance of the model for the western area (Correlation coefficient = 0.89 in the western Black sea, while Correlation coefficient = 0.81 in the basin scale). Next steps will be dedicated to a coastal application on the western Black Sea coupling circulation, waves and sediment transport.</p> <p>All of the modeling activities are developed within the framework and funded by the Horizon 2020 DOORS (Developing Optimal and Open Research support for the Black sea) project, (Grant no. 101000518) https://www.doorsblacksea.eu/.</p>
This study aims at providing analytical investigations to the first and second-order on the wave–current–mud interaction problem by applying a perturbation method. Direct formulations of the wave–current–mud interaction could not be found in the literature. Explicit formulations for the particle velocity, dissipation rates, and phase shift in the first order and the mass transport in the second-order have been obtained. The findings of the current study confirmed that by an increase in the current velocity (e.g., moving from negative to positive values of current velocity), the dissipation rates and mud (instantaneous and mean) velocity decrease. The proposed assumption of a thin mud layer (boundary layer assumption) matches with the laboratory data in the mud viscosity of the orders of (0.01 N/m2) in both wave dissipation and mud mass transport leading to small ranges of discrepancies. The results from the newly proposed model were compared with the measurements and the results of an existing model in the literature. The proposed model showed better agreements in simulating the mud (instantaneous and mean) velocity compared to the existing one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.