We describe the magnetic and transport properties of Fe(OOI )/Cr(OOI) superlattices grown on GaAs (001) by molecular-beam epitaxy and characterized by reflection high-energy electron diffraction (RHEED), Auger spectroscopy, x-ray diffraction, and electron microscopy. For Cr layers thinner than about 30 A the magnetic behavior reveals strong antiferromagnetic couplings between the Fe layers across the Cr layers. Polarized neutron diffraction experiments confirm the existence of an antiferromagnetic superstructure. We discuss the origin of the antiferromagnetic (AF) coupling. The Fe/Cr superlattices with AF interlayer coupling exhibit a giant magnetoresistance: when an applied field aligns the magnetizations of the Fe layers, the resistivity drops by a factor of 2 for some samples. This giant magnetoresistance can be ascribed to the spin dependence of the electron scattering by interfaces. We compare our results with the predictions of two recent theoretical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.