We study tunneling process through quantum horizon of a Schwarzschild black hole in noncommutative spacetime. This is done by considering the effect of smearing of the particle mass as a Gaussian profile in flat spacetime. We show that even in this noncommutative setup there will be no correlation between the different modes of radiation which reflects the fact that information doesn't come out continuously during the evaporation process at least at late-time. However, due to spacetime noncommutativity, information might be preserved by a stable black hole remnant.
The Generalized Uncertainty Principle (GUP), motivated by current alternatives of quantum gravity, produces significant modifications to the Hawking radiation and the final stage of black hole evaporation. We show that incorporation of the GUP into the quantum tunneling process (based on the null-geodesic method) causes correlations between the tunneling probability of different modes in the black hole radiation spectrum. In this manner, the quantum information becomes encrypted in the Hawking radiation, and information can be recovered as non-thermal GUP correlations between tunneling probabilities of different modes.
Possible existence of black holes remnants provides a suitable candidates for dark matter. In this paper we study the possibility of existence for such remnants. We consider quantum gravitational induced corrections of black hole's entropy and temperature to investigate the possibility of such relics. Observational scheme for detection of these remnants and their cosmological constraints are discussed.
We study tunneling of massless and massive particles through the smeared quantum horizon of the extra-dimensional Schwarzschild black holes. The emission rate of the particles' tunneling is modified by noncommutativity effects in a bulk spacetime of dimension d. The issues of information loss and possible correlations between emitted particles are discussed. We show that even by considering both noncommutativity and braneworld effects, there is no correlation between different modes of evaporation at least at late-time and within approximations used in the calculations. However, incorporation of quantum gravity effects such as modification of the standard dispersion relation or generalization of the Heisenberg uncertainty principle, leads to the correlation between emitted particles. Although time-evolution of these correlations is not trivial, a part of information coming out of the black hole can be preserved in these correlations. On the other hand, as a well-known result of spacetime noncommutativity, a part of information may be preserved in a stable black hole remnant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.