Many physical, chemical and biological processes taking place at the land surface are strongly influenced by the amount of water stored within the upper soil layers. Therefore, many scientific disciplines require soil moisture observations for developing, evaluating and improving their models. One of these disciplines is meteorology where soil moisture is important due to its control on the exchange of heat and water between the soil and the lower atmosphere. Soil moisture observations may thus help to improve the forecasts of air temperature, air humidity and precipitation. However, until recently, soil moisture observations had only been available over a limited number of regional soil moisture networks. This has hampered scientific progress as regards the characterisation of land surface processes not just in meteorology but many other scientific disciplines as well. Fortunately, in recent years, satellite soil moisture data have increasingly become available. One of the freely available global soil moisture data sets is derived from the backscatter measurements acquired by the Advanced Scatterometer (ASCAT) that is a C-band active microwave remote sensing instrument flown on board of the Meteorological Operational (METOP) satellite series. ASCAT was designed to observe wind speed and direction over the oceans and was initially not foreseen for monitoring soil moisture over land. Yet, as argued in this review paper, the characteristics of the ASCAT instrument, most importantly its wavelength (5.7 cm), its high radiometric accuracy, and its multiple-viewing capabilities make it an attractive sensor for measuring soil moisture. Moreover, given the operational status of ASCAT, and its promising long-term prospects, many geoscientific applications might benefit from using ASCAT soil moisture data. Nonetheless, the ASCAT soil moisture product is relatively complex, requiring a good understanding of its properties before it can be successfully used in applications. To provide a comprehensive overview of the major characteristics and caveats of the ASCAT soil moisture product, this paper describes the ASCAT instrument and the soil moisture processor and near-real-time distribution service implemented by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). A review of the most recent validation studies shows that the quality of ASCAT soil moisture product is-with the exception of arid environments-comparable to, and over some regions (e.g. Europe) even better than currently available soil moisture data derived from passive microwave sensors. Further, a review of applications studies shows that the use of the ASCAT soil moisture product is particularly advanced in the fields of numerical weather prediction and hydrologic modelling. But also in other application areas such as yield monitoring, epidemiologic modelling, or societal risks assessment some first progress can be noted. Considering the generally positive evaluation results, it is expected that the ASCAT soil moisture product ...
Measuring precipitation intensity is not straightforward; and over many areas, ground observations are lacking and satellite observations are used to fill this gap. The most common way of retrieving rainfall is by addressing the problem "top-down" by inverting the atmospheric signals reflected or radiated by atmospheric hydrometeors. However, most applications are interested in how much water reaches the ground, a problem that is notoriously difficult to solve from a top-down perspective. In this study, a novel "bottom-up" approach is proposed that, by doing "hydrology backward," uses variations in soil moisture (SM) sensed by microwave satellite sensors to infer preceding rainfall amounts. In other words, the soil is used as a natural rain gauge. Three different satellite SM data sets from the Advanced SCATterometer (ASCAT), the Advanced Microwave Scanning Radiometer (AMSR-E), and the Microwave Imaging Radiometer with Aperture Synthesis are used to obtain three new daily global rainfall products. The "First Guess Daily" product of the Global Precipitation Climatology Centre (GPCC) is employed as main benchmark in the validation period 2010-2011 for determining the continuous and categorical performance of the SM-derived rainfall products by considering the 5 day accumulated values. The real-time version of the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis product, i.e., the TRMM-3B42RT, is adopted as a state-of-the-art satellite rainfall product. The SM-derived rainfall products show good Pearson correlation values (R) with the GPCC data set, mainly in areas where SM retrievals are found to be accurate. The global median R values (in the latitude band ±50°) are equal to 0.54, 0.28, and 0.31 for ASCAT-, AMSR-E-, and SMOS-derived products, respectively. For comparison, the median R for the TRMM-3B42RT product is equal to 0.53. Interestingly, the SM-derived products are found to outperform TRMM-3B42RT in terms of average global root-mean-square error statistics and in terms of detection of rainfall events. The regions for which the SM-derived products perform very well are Australia, Spain, South and North Africa, India, China, the Eastern part of South America, and the central part of the United States. The SM-derived products are found to estimate accurately the rainfall accumulated over a 5 day period, an aspect particularly important for their use for hydrological applications, and that address the difficulties of estimating light rainfall from TRMM-3B42RT.
The scatterometers onboard the European Remote Sensing satellites (ERS-1 & ERS-2) and the METeorological OPerational satellite (METOP) have been shown to be useful for surface soil moisture retrieval using the so-called TU-Wien change detection method. This paper presents an improved soil moisture retrieval algorithm based on the existing TU-Wien method but with new parameterization as well as a series of modifications. The new algorithm, WAter Retrieval Package 5 (WARP5), copes with some limitations identified in the earlier method WARP4 and provides the possibility of migrating soil moisture retrieval from ERS-SCAT to METOP-ASCAT data. The WARP5 algorithm results in a more robust and spatially uniform soil moisture product, thanks to its new processing elements, including a method for the correction of azimuthal anisotropy of backscatter, a comprehensive noise model, and new techniques for calculation of the model parameters. Cross-comparisons of WARP4 and WARP5 data sets with the Oklahoma Mesonet in situ observations and also with European Centre of Medium Range Weather Forcast (ECMWF) ReAnalysis (ERA-Interim) global modeled data show that the new algorithm has a better performance and effectively corrects retrieval errors in certain areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.