The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid-and highfrequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.
In this paper we present the results of a coherent narrow-band search for continuous gravitationalwave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era CMB, BAO, SNIa and Lyman-α data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5
A method is presented for Bayesian model selection without explicitly computing evidences, by using a combined likelihood and introducing an integer model selection parameter n so that Bayes factors, or more generally posterior odds ratios, may be read off directly from the posterior of n. If the total number of models under consideration is specified a priori, the full joint parameter space (θ, n) of the models is of fixed dimensionality and can be explored using standard Markov chain Monte Carlo (MCMC) or nested sampling methods, without the need for reversible jump MCMC techniques. The posterior on n is then obtained by straightforward marginalisation. We demonstrate the efficacy of our approach by application to several toy models. We then apply it to constraining the dark energy equation-of-state using a free-form reconstruction technique. We show that ΛCDM is significantly favoured over all extensions, including the simple w(z)=constant model.
The current concordance model of cosmology is dominated by two mysterious ingredients: dark matter and dark energy. In this paper, we explore the possibility that, in fact, there exist two dark-energy components: the cosmological constant Λ, with equation-of-state parameter wΛ=−1, and a 'missing matter' component X with wX=−2/3, which we introduce here to allow the evolution of the universal scale factor as a function of conformal time to exhibit a symmetry that relates the big bang to the future conformal singularity, such as in Penrose's conformal cyclic cosmology. Using recent cosmological observations, we constrain the present-day energy density of missing matter to be ΩX,0=−0.034 ± 0.075. This is consistent with the standard ΛCDM model, but constraints on the energy densities of all the components are considerably broadened by the introduction of missing matter; significant relative probability exists even for ΩX,0 ∼ 0.1, and so the presence of a missing matter component cannot be ruled out. As a result, a Bayesian model selection analysis only slightly disfavours its introduction by 1.1 log-units of evidence. Foregoing our symmetry requirement on the conformal time evolution of the universe, we extend our analysis by allowing wX to be a free parameter. For this more generic 'double dark energy' model, we find wX = −1.01 ± 0.16 and ΩX,0 = −0.10 ± 0.56, which is again consistent with the standard ΛCDM model, although once more the posterior distributions are sufficiently broad that the existence of a second dark-energy component cannot be ruled out. The model including the second dark energy component also has an equivalent Bayesian evidence to ΛCDM, within the estimation error, and is indistuingishable according to the Jeffreys guideline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.