Steady state levels of hypothalamic expression of the genes encoding corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), arginine vasopressin (AVP), and oxytocin (OT) were studied in rats to investigate the mechanisms underlying the transitions between hypercorticalism during lactation and normocorticalism upon weaning. During lactation, CRH mRNA levels and blood titers of adrenocorticotropin (ACTH) were found to be significantly reduced, although POMC mRNA levels in the anterior pituitary were not significantly different from those found in cycling virgin (control) rats; during all phases of lactation, an inverse relationship was observed between the blood levels of ACTH and corticosterone (CORT). Plasma prolactin (PRL) concentrations were elevated 30-fold during lactation. Whereas steady state levels of OT mRNA were markedly increased throughout lactation, those of AVP mRNA were only transiently (initially) elevated, and the blood levels of these hormones were not significantly altered in lactating as compared with cycling virgin and postlactating rats. CRH and POMC gene expression and blood levels of ACTH, CORT, and PRL were normalized within 1-3 d of removal of suckling pups. The temporal relationships between the biosynthetic profiles of the various peptide hormones and the patterns of ACTH and CORT secretion during the two physiological states suggest that lactation-associated hypercorticalism does not merely result from increased ACTH secretion; although still not well substantiated at this time, the evidence points to contributory roles of PRL, OT, and AVP in the hypercorticalismic state found during lactation. (J. Clin. Invest. 1995.96:1208-1215
Within the broader framework of facilitating investigations into the inherent responses of restricted neuronal phenotypes devoid of their in vivo afferents, serum- and steroid-free cultures enriched in corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), and beta-endorphin (beta-END) peptidergic neurons were prepared from the hypothalamic paraventricular (PVN: CRH and AVP) and/or arcuate (ARC: beta-END) nuclei of juvenile male rats. The functional viability of these ARC/PVN cultures was verified by their ability to synthesize and secrete CRH, AVP, and beta-END under basal and depolarizing (veratridine) conditions in vitro. Peptide secretion was shown to be Ca2+ and Na+ dependent in that it was blocked in the presence of verapamil and tetrodotoxin, respectively. Exposure of ARC/PVN cocultures to the glucocorticoid dexamethasone (DEX) resulted in a dose-dependent increase of CRH secretion and an inhibition of AVP and beta-END; the CRH responses deviated strikingly from predictions based on in vivo experiments. Steroid withdrawal or treatment with the glucocorticoid receptor antagonist RU38486 reversed these trends. Opposite effects of DEX on CRH secretion were observed in cultures consisting of PVN cells only. Supported by studies using an opioid receptor agonist (morphine) and antagonist (naloxone), these observations demonstrate that ARC-derived (beta-END) neurons modulate the responses of PVN neurons to DEX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.