Estimating population size of a nocturnal burrow-nesting seabird using acoustic monitoring and habitat mapping. Nature Conservation 7: 1-13. doi: 10.3897/natureconservation.7.6890 Abstract Population size assessments for nocturnal burrow-nesting seabirds are logistically challenging because these species are active in colonies only during darkness and often nest on remote islands where manual inspections of breeding burrows are not feasible. Many seabird species are highly vocal, and recent technological innovations now make it possible to record and quantify vocal activity in seabird colonies. Here we test the hypothesis that remotely recorded vocal activity in Cory's shearwater (Calonectris borealis) breeding colonies in the North Atlantic increases with nest density, and combined this relationship with cliff habitat mapping to estimate the population size of Cory's shearwaters on the island of Corvo (Azores). We deployed acoustic recording devices in 9 Cory's shearwater colonies of known size to establish a relationship between vocal activity and local nest density (slope = 1.07, R 2 = 0.86, p < 0.001). We used this relationship to predict the nest density in various cliff habitat types and produced a habitat map of breeding cliffs to extrapolate nest density around the island of Corvo. The mean predicted nest density on Corvo ranged from 6.6 (2.1-16.2) to 27.8 (19.5-36.4) nests/ha. Extrapolation of habitat-specific nest densities across the cliff area of Corvo resulted in an estimate of 6326 Cory's shearwater nests (95% confidence interval: 524). This population size estimate is similar to previous assessments, but is too imprecise to detect moderate changes in population size over time. While estimating absolute population size from acoustic recordings may not be sufficiently precise, the strong positive relationship that we found between local nest density and recorded calling rate indicates that passive acoustic monitoring may be useful to document relative changes in seabird populations over time. RESEARCH ARTICLE Launched to accelerate biodiversity conservation A peer-reviewed open-access journalSteffen Oppel et al. / Nature Conservation 7: 1-13 (2014) 2
Populations of feral (not owned by humans) and domestic cats Felis catus coexist in most inhabited islands, and they have similar impacts on native species. Feral cats are generally believed to vary their diet according to prey availability; however, no previous studies of diet have tested this hypothesis on insular ecosystems with a limited range of available prey. Because domestic cats kill prey independently of hunger, the spatial extent of their impact on wildlife will be influenced by home-range size. In this study, we combined dietary information with cat movements to assess the impacts of feral and domestic cats on island biodiversity. We quantified the diet of cats from scat samples collected across one year and tested whether diet varies by season. The abundance of main prey categories was also estimated to document seasonal variation in prey availability for cats. Finally, we tracked domestic cats by global positioning system units in all four seasons to examine whether home-range patterns varied seasonally. The diet of cats constituted three prey groups (rodents, birds and invertebrates), and the seasonal variation in consumption of each taxon matched the seasonal variation in prey availability, thus supporting the generalist behaviour of cats on oceanic islands. Roaming behaviour varied among individuals and across seasons, but could not be explained by availability of prey. Unconfined cats had larger homeranges than confined cats, but most domestic cats strayed <1 km from home. Thus, confinement of domestic cats might reduce the spatial extent of cat impact on native prey populations on oceanic islands.
Breeding seabirds are central-place foragers and therefore exploit food resources most intensively nearer their colonies. When nesting aggregations are close to one another density-dependent competition is likely to be high, potentially promoting foraging segregation (i.e. neighbouring colonies may segregate to search for food in different areas). However, little is known about spatial segregation in foraging behaviour between closely adjacent colonies, particularly in species that are wide-ranging foragers. Here, we tested for foraging segregation between two sub-colonies of a wide-ranging seabird, Cory's shearwater Calonectris borealis, separated by only 2 km, on a small Island in the North Atlantic. During the 2010 chick-rearing period, 43 breeding adults of both sexes were simultaneously sampled at both sub-colonies. A GPS logger was deployed on each individual and removed after several foraging trips at sea. Blood samples (plasma and red blood cells) were collected from each tracked individual for stable isotope analysis. Results indicated partial spatial segregation between the two sub-colonies during local foraging trips (i.e. those of ≤1 day duration and 216 km from the colony) accounting for 84.2% of all trips recorded. The location of the breeding sub-colony influenced the direction of travel of birds during local trips resulting in sub-colony-specific foraging areas. Although the oceanographic conditions associated with the foraging range of the two sub-colonies differed, no differences were found in the habitat exploited and in their estimated diets. This suggests that birds concentrated their feeding activity in patches of similar habitat and prey during the chick-rearing period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.