An integrated System-on-Chip (SoC) has been designed in 0.6 \mu m CMOS mixed analog/digital technology, and tested for high rate alpha particle Counting. The sensor is the most innovative part of the chip, with a total active area of 2 x 2.5 mm x 5 mm. The two-stage charge-to-voltage amplification scheme includes a numerical block for offset compensation. Designed with a gain of 700, the chip has been tested in alpha sources: a very high signal over noise ratio was obtained, leading to a detection efficiency of 5 MeV alpha particles close to 100%. The chip is working at room temperature and has been tested tip to 300 kHz reset frequency. Future applications of this SoC will focus on detection of fast and thermal neutrons free of gamma contamination
A CMOS active pixel sensor, originally designed for the tracking of minimum ionising charged particles in high-energy physics, has been recently used for the detection of fast neutrons. Data were taken at the IRSN Cadarache facility with a (241)Am-Be ISO source and a polyethylene radiator. A high-intrinsic efficiency (1.2 x 10(-3)) has been obtained. It is in good agreement with both calculations and a MCNPX Monte Carlo simulation. This experiment paves the way for a fully electronic personal neutron dosemeter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.