We consider superconductivity in boron (B) doped diamond using a simplified
model for the valence band of diamond. We treat the effects of substitutional
disorder of B ions by the coherent potential approximation (CPA) and those of
the attractive force between holes by the ladder approximation under the
assumption of instantaneous interaction with the Debye cutoff. We thereby
calculate the quasiparticle life time, the evolution of the single-particle
spectra due to doping, and the effect of disorder on the superconducting
critical temperature $T_c$. We in particular compare our results with those for
supercell calculations to see the role of disorder, which turns out to be of
crucial importance to $T_c$.Comment: 9 pages, 13 figures, submitted to J. Phys. Soc. Jpn., Errors in
embedded eps figure files have been correcte
We consider electronic properties of hollandite vanadate K2V8O16, a one-dimensional zigzag-chain system of t2g orbitals in a mixed valent state. We first calculate the Madelung energy and obtain the relative stability of several charge-ordering patterns to determine the most stable one that is consistent with the observed superlattice structure. We then develop the strong-coupling perturbation theory to derive the effective spin-orbit Hamiltonian, starting from the triply-degenerate t2g orbitals in the VO6 octahedral structure. We apply an exact-diagonalization technique on small clusters of this Hamiltonian and obtain the orbital-ordering pattern and spin structures in the ground state. We thereby discuss the electronic and magnetic properties of K2V8O16 including predictions on the outcome of future experimental studies.
The variational cluster approach (VCA) based on the self-energy functional theory is applied to the two-dimensional symmetric periodic Anderson model at half filling. We calculate a variety of physical quantities including the staggered moments and single-particle spectra at zero temperature to show that the symmetry breaking due to antiferromagnetic ordering occurs in the strong coupling region, whereas in the weak coupling region, the Kondo insulating state without symmetry breaking is realized. The critical interaction strength is estimated. We thus demonstrate that the phase transition due to competition between antiferromagnetism and Kondo screening in the model can be described quantitatively by VCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.