Densities, ultrasonic speeds and viscosities have been measured for benzyl alcohol, ethanol, propan-1-ol, octan-1-ol and for their binary mixtures with benzyl alcohol as common component at 303 K. From the experimental data, isentropic compressibility, relative association, acoustic impedance, molar sound velocity, excess volume, excess isentropic compressibility, deviations of viscosity and ultrasonic speed from linear dependence on composition, excess acoustic impedance and molecular association for all the three binary mixtures were obtained. These parameters have been interpreted in terms of intermolecular interactions. The experimental viscosity data of the three binary mixtures were used to test the validity of the empirical relations of Grunberg-Nissan, Tamura-Kurata, Hind-Mclaughlin, Katti-Chaudhary and Heric. The experimental values of ultrasonic speeds have been compared with those predicted on the basis of the Nomoto empirical relation, collision factor theory, free length theory and van Dael and Vangeel ideal mixing relation. The relative merits of these theories and relations are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.