Static multipole polarizabilities of S atoms or ions have been calculated by two equivalent variational methods. Our results are in harmony with an earlier work which used the uncoupled Hartree-Fock approximation
AbstractsTwo previous schemes for the calculation of dynamic multipole polarizabilities of atomic systems, namely, a hydrodynamic analogy to quantum mechanics and a perturbation expansion of the energy in multipoles, follow also from the conventional time-dependent perturbation scheme.Deux procedes, dtcrits prtcbdemment, pour le calcul des polarisabilitts multipolaires dynamiques de systtmes atomiques, savoir une analogie hydrodynamique a la mtcanique quantique et un dtveloppement de perturbation de I'energie en multipbles, sont obtenus aussi du schema conventionnel de perturbations dependantes du temps.Zwei fruher beschriebene Verfahren fur die Berechnung von dynamischen Multipolpolarisierbarkeiten fur atomare Systeme, namlich eine hydrodynamische Analogie zur Quantenmechanik und eine Storungsentwicklung der Energie in Multipolen, folgen auch von dem konventionellen zeitabhangigen Storungsschema.Recently, we described two methods of calculating the dynamic multipole polarizabilities of atomic [ l , 21 and molecular systems [3].The first method is based on the hydrodynamic model to quantum mechanics of Weiner and Askar [4] and Askar and Demiralp [5], extended by one of the present authors [l] and Bartolotti and Tyrrell [6]; the equivalence of the two extensions has been discussed [2,7]. The second method is an extension [2] of the scheme of Rivail and Rinaldi [8] for static multipole polarizabilities of atomic system, in which the total * Reference 11 contains extensive references to earlier works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.