This paper presents a 1D model of a direct current glow discharge based on the solution of the kinetic Boltzmann equation in the two-term approximation. The model takes into account electron-electron coulomb collisions, the corresponding collision integral is written in both detailed and simplified forms. The Boltzmann equation for electrons is coupled with continuity equations for ions and metastable atoms and the Poisson equation for electric potential. Simulations are carried out self-consistently for the whole length of discharge in helium (from cathode to anode) for cases p = 1 Torr, L = 3.6 cm and p = 20 Torr, L = 1.8 mm, so that pL = 3.6 cm·Torr in both cases. It is shown that simulations based on the kinetic approach give lower values of electron temperature in plasma than fluid simulations. Peaks in spatial differential flux corresponding to the electrons originating from superelastic collisions and Penning ionization were observed in simulations. Different approaches of taking coulomb collisions into account give significantly different values of electron density and electron temperature in plasma. Analysis showed that using a simplified approach gives a non-zero contribution to the electron energy balance, which is comparable to energy losses on elastic and inelastic collisions and leads to significant errors and thus is not recommended.
In the present study, atmospheric pressure argon plasma jets driven by lower-power pulsed microwaves have been proposed with a type of hairpin resonator. The plasma jet plume demonstrates distinctive characteristics, like arched plasma pattern and local plasma bullets. In order to understand how the hairpin resonator works, electromagnetic simulation of the electric field distribution and self-consistent fluid simulation of the interaction between the enhanced electric field and the pulse plasma plume are studied. Simulated spatio-temporal distributions of the electric field, the electron temperature, the electron density, and the absorbed power density have been sampled, respectively. The experimental and simulated results together suggest that the driving mechanism of the hairpin resonator works in the multiple electromagnetic modes of transmission line and microwave resonator, while the local plasma bullets are resonantly generated by local enhanced electric field of surface plasmon polaritons. Moreover, it should be noticed that the radian of the arched plasma plume is mainly affected by the input power and gas flow rate, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.