Elenagen is a plasmid encoding p62/SQSTM1, the first DNA vaccine possessing two mutually complementing mechanisms of action: it elicits immune response against p62 and mitigates systemic chronic inflammation. Previously, Elenagen demonstrated anti-tumor efficacy and safety in rodent tumor models and spontaneous tumors in dogs. This multicenter I/IIa trial evaluated safety and clinical activity of Elenagen in patients with advanced solid tumors. Fifteen patients were treated with escalating doses of Elenagen (1- 5 mg per doses, 5 times weekly) and additional 12 patients received 1 mg dose. Ten patients with breast and ovary cancers that progressed after Elenagen were then treated with conventional chemotherapy. Adverse events (AE) were of Grade 1; no severe AE were observed. Cumulatively twelve patients (44%) with breast, ovary, lung, renal cancer and melanoma achieved stable disease for at least 8 wks, with 4 of them (15%) had tumor control for more than 24 wks, with a maximum of 32 wks. The patients with breast and ovary cancers achieved additional tumor stabilization for 12-28 wks when treated with chemotherapy following Elenagen treatment. Therefore, Elenagen demonstrated good safety profile and antitumor activity in advanced solid tumors. Especially encouraging is its ability to restore tumor sensitivity to chemotherapy.
P62/SQSTM1, a multi-domain protein that regulates inflammation, apoptosis, and autophagy, has been linked to age-related pathologies. For example, previously we demonstrated that administration of p62/SQSTM1-encoding plasmid reduced chronic inflammation and alleviated osteoporosis and metabolic syndrome in animal models. Herein, we built upon these findings to investigate effect of the p62-encoding plasmid on an age-related macular degeneration (AMD), a progressive neurodegenerative ocular disease, using spontaneous retinopathy in senescence-accelerated OXYS rats as a model. Overall, the p62DNA decreased the incidence and severity of retinopathy. In retinal pigment epithelium (RPE), p62DNA administration slowed down development of the destructive alterations of RPE cells, including loss of regular hexagonal shape, hypertrophy, and multinucleation. In neuroretina, p62DNA prevented gliosis, retinal thinning, and significantly inhibited microglia/macrophages migration to the outer retina, prohibiting their subretinal accumulation. Taken together, our results suggest that the p62DNA has a strong retinoprotective effect in AMD.
S U M M A R YThe fetus must transport considerable and increasing amounts of calcium across the placental trophoblast epithelium to support growth and development and bone formation. Active calcium transport across epithelia has been shown to correlate with calbindin D 9k or 28k content. This study examined the distribution of calbindin D 9k (9CBP) protein and mRNA during pregnancy in the bovine placenta to determine its possible role in calcium transport in this system. The immunocytochemical results show 9CBP in an increasing percentage of interplacentomal uninucleate trophoblast cells until, at term, all show a level at least eight times that of any other placental cell. There is a similar, although smaller, rise in their 9CBP mRNA content. The mature interplacentomal binucleate cell ( ف 5% of the total) contains no 9CBP at any stage of pregnancy. In interplacentomal uterine epithelium, 9CBP protein and mRNA decrease to zero in late pregnancy but the glands maintain constant low levels throughout. In the placentome trophoblast, uninucleate cells show insignificant amounts but binucleate cells (15-20% of the total trophoblast cells) contain considerable levels of both 9CBP protein and mRNA, as do all the uninucleate uterine epithelial cells. The placentomal binucleate cells show peak values at mid-pregnancy; the placentomal uterine epithelium shows only small changes in levels in the second half of pregnancy. Increase in fetal calcium demand in the second half of pregnancy therefore correlates with a major increase in 9CBP only in the interplacentomal trophoblast, as we have also shown in the sheep and goat, indicating an important role for this region in active calcium transport by the ruminant placenta. The 9CBP is distributed uniformly in the cytosol and nucleoplasm, supporting a role in facilitated diffusion of calcium through the cell rather than a vesicular shuttle system. (J Histochem Cytochem 46:679-688, 1998)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.