We present an analytical solution for the vortex lattice in a rapidly
rotating trapped Bose-Einstein condensate (BEC) in the lowest Landau level and
discuss deviations from the Thomas-Fermi density profile. This solution is
exact in the limit of a large number of vortices and is obtained for the cases
of circularly symmetric and narrow channel geometries. The latter is realized
when the trapping frequencies in the plane perpendicular to the rotation axis
are different from each other and the rotation frequency is equal to the
smallest of them. This leads to the cancelation of the trapping potential in
the direction of the weaker confinement and makes the system infinitely
elongated in this direction. For this case we calculate the phase diagram as a
function of the interaction strength and rotation frequency and identify the
order of quantum phase transitions between the states with a different number
of vortex rows.Comment: 17 pages, 12 figures, with addition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.