Macrocyclic amphiphilic molecules based on calix[4]arenes are highly attractive for controlled supramolecular assembly of DNA into small nanoparticles, since they present a unique conical architecture and can bear multiple charged groups. In the present work, we synthesized new amphiphilic calixarenes bearing cationic groups at the upper rim and alkyl chains at the lower rim. Their self-assembly in aqueous solution was characterized by fluorescent probes, fluorescence correlation spectroscopy, dynamic light scattering, gel electrophoresis and atomic force microscopy. We found that calixarenes bearing long alkyl chains (octyl) self-assemble into micelles of 6 nm diameter at low critical micellar concentration and present the unique ability to condense DNA into small nanoparticles of about 50 nm diameter. In contrast, the short-chain (propyl) analogues that cannot form micelles at low concentrations failed to condense DNA, giving large polydisperse DNA complexes. Thus, formation of small DNA nanoparticles is hierarchical, requiring assembly of calixarenes into micellar building blocks that further co-assemble with DNA into small virus-sized particles. The latter showed much better gene transfection efficiency in cell cultures relative to the large DNA complexes with the short-chain analogues, which indicates that gene delivery of calixarene/DNA complexes depends strongly on their structure. Moreover, all cationic calixarenes studied showed low cytotoxicity. Thus, this work presents a two-step hierarchical assembly of small DNA nanoparticles for gene delivery based on amphiphilic cone-shaped cationic calixarenes.
The extraction of uranyl from acidic (HNO(3)) aqueous solutions toward an ionic liquid phase, C(1)-C(4)-imTf(2)N (1-methyl,3-butylimidazolium Tf(2)N), has been investigated as a function of initial acid concentration and ligand concentration for two different extracting moieties: a classical malonamide, N,N'-dimethyl-N,N'-dibutylmalonamide (DMDBMA) and a functionalized IL composed of the Tf(2)N(-) anion and an imidazolium cation on which a malonamide pattern has been grafted (FIL-MA). The extraction mechanism, as demonstrated through the influence of added C(1)-C(4)-imCl or added LiTf(2)N in the aqueous phase, is slightly different between the DMDBMA and FIL-MA extracting agents. Modeling of the extraction data evidences a double extraction mechanism, with cation exchange of UO(2)(2+)versus 2 H(+) for DMDBMA or versus C(1)-C(4) -im(+) and H(+) for FIL-MA at low acidic values, and through anion exchange of [UO(2)(NO(3))(3)](-)versus Tf(2)N(-) for both ligands at high HNO(3) concentrations. The FIL-MA molecule is more efficient than its classical DMDBMA parent.
A method for fabrication of a new type of optical fiber with dispersion varying along the fiber length is described. The main optical parameters of a drawn fiber are theoretically studied and experimentally measured. These fibers are of great interest for nonlinear fiber optics. Such applications of the fibers, such as high-quality soliton pulse compression, soliton pulsewidth stabilization through compensation of losses, and generation of a high-repetition-rate train of practically uninteracting solitons, are considered.
The solubilities of C1C4im(+) and Tf2N(-) in nitric aqueous phases have been measured for several ligand types and concentrations (0.04 M tributylphosphine oxide, 0.05 M N,N'-dimethyl-N,N'-dibutylmalonamide, 0.10 M 1-methyl-3-[4-(dibutylphosphinoyl)butyl]-3H-imidazol-1-ium bis(trifluoromethylsulphonyl)imidate, and 1.1 M N,N-dihexyloctanamide). The data evidence a significant difference between the solubilities of the cations and anions of the ionic liquid as a consequence of several ion-exchange and/or ion-pairing mechanisms involving all ions present in the system as well as the protonation/nitric-extraction ability of the ligand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.