Quantitative and mechanism-based information on differences in transfection efficiency between viral and non-viral vectors would be highly useful for improving the effectiveness of non-viral vectors. A previous quantitative comparison of intracellular trafficking between adenovirus and LipofectAMINE PLUS (LFN) revealed that the three orders of magnitude lower transfection efficiency of LFN was dominantly rate limited by the post-nuclear delivery process. In the present study, the contribution of transcription and translation processes to the overall differences in the transgene expression efficiency of nucleus-delivered DNA was independently evaluated by quantifying mRNA. As a result, transcription efficiency (Etranscript) of LFN, denoted as transgene expression divided by the amount of nuclear pDNA was about 16 times less than that for adenovirus. Furthermore, translation efficiency (Etranslate), denoted as transfection activity divided by mRNA expression was approximately 460 times less in LFN. Imaging of the decondensed form of DNA by in situ hybridization revealed that poor decondensation efficiency of LFN is involved in the inferior Etranscript. Moreover, the inferior translation efficiency (Etranslate) of LFN was mainly due to electrostatic interactions between LFN and mRNA. Collectively, an improvement in nuclear decondensation and the diminution of the interaction between vector and mRNA is essential for the development of new generations of non-viral vectors.
Gene mutations were found in acute myeloid leukemia (AML) and their importance has been noted. To clarify the importance and stability of mutations, we examined gene mutations in paired samples at diagnosis and relapse of 34 adult AML patients. Five acquired gene mutations were detected at relapse. Of the 45 gene mutations at diagnosis, 11 of them were lost at relapse. The acquired mutations at relapse were all class I mutations as Fms-like tyrosine kinase 3 (FLT3) and rat sarcoma viral oncogene homolog (RAS) mutations. The disappeared mutations at relapse were 3 of 11 internal tandem duplications of FLT3 (FLT3-ITD) (27.3%), 3 of 3 FLT3 tyrosine kinase domain (FLT3-TKD) (100%), 3 of 13 Nucleophosmin 1 (23.1%) and 2 of 5 CCAAT/enhancer-binding protein-α (40%) mutations. However, epigenetics-modifying gene (DNMT3a, TET2 and IDH1/2) mutations had no change between diagnosis and relapse samples, and may become minimal residual disease marker. The frequency of FLT3-ITD at relapse in patients with DNMT3a mutation at diagnosis is significantly higher than those in patients without them (P=0.001). Moreover, the high frequency of FLT3-ITD at relapse is also seen in AML cases that initially present with any epigenetics-modifying gene mutations (P<0.001). Our results indicate that epigenetics-modifying gene mutations may cause genetic instability and induce FLT3-ITD, leading to resistance to therapy and relapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.