Sufficient conditions for the asymptotic stability of the solutions of a second-order linear integro-differential equation of the Volterra type are established in the case where the solutions of the corresponding second-order linear differential equation may have no property under study. Thus, the influence of integral perturbations on the asymptotic stability of solutions of linear differential equations of the second order is revealed. For this purpose, the method of auxiliary kernels is developed. An illustrative example is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.