The N(2) liberation from iminodiazonium ion (2-X) is a key step of the Schmidt rearrangement of ketones. Molecular orbital calculations showed that two concurrent reaction channels, syn-benzyl fragmentation and anti-Me rearrangement, exist for syn-2, whereas anti-2-X proceeds via a single TS. Substituent effect analyses of the reactions of syn-2-X gave concave-upward plots, typical for a concurrent reaction mechanism. On the other hand, the reactions of anti-2-X gave linear Hammett plots, indicative of a single reaction mechanism for all anti-2-X. IRC calculations, however, revealed that the TS led to either an anti-benzyl rearrangement or an anti-benzyl fragmentation product depending on the substituent. Thus, the change of the mechanism (identity of the product) could not be detected by the Hammett plots. Ab initio dynamics simulations for anti-2-X were found to follow the IRC path for X = p-NO(2), giving the rearrangement product, and almost so for X = p-MeO, giving the fragmentation products. However, in borderline cases where X is less donating than p-MeO and less withdrawing than p-NO(2), the trajectories did not follow the minimum energy path on the potential energy surface but gave both rearrangement and fragmentation products directly from the single TS. This is a novel example of path bifurcation for a closed shell anionic reaction. It was concluded that a reactivity-selectivity argument based on the traditional TS theory might not always be applicable even to a well-known textbook organic reaction.
The role of non-locality in transport bifurcation is indicated by experiments in the Large Helical Device. A long distance correlation of the order of the plasma radius between the heat flux and temperature gradient is determined by using cross-correlation analysis. This long distance correlation induces a new transport bifurcation. A bifurcation diagram including the non-locality demonstrates that the non-local temperature rise phenomena can be explained qualitatively by the cusp catastrophe model.
Shock reflections over a convex and a concave wedge were investigated by using a 5 × 7 cm ordinary pressure-driven shock tube. Dry air was used for both the driving and driven gases. The large difference between the transition from regular (RR) to Mach reflection (MR) and that from MR to RR was observed, confirming the results obtained by Ben-Dor, Takayama & Kawauchi (1980). These results contradict all of the previous theoretical transition criteria. A new theory on the transition between RR and MR was developed by applying Whitham's ‘ray shock’ theory. This new theory agrees quite well with the experimental results.
ABSTRACT:We recently reported a case of increase in the blood level of tacrolimus following intake of pomelo in a renal transplant recipient. To clarify the mechanism of this increase in the blood level of tacrolimus, we investigated the effect of pomelo juice extract on the activities of CYP3A4 and P-glycoprotein, in comparison with that of extract of grapefruit juice (GFJ). The 10% ethyl acetate extracts of the juice of three pomelos of different origins (Banpeiyu, pomelo I; Hirado Buntan, pomelo II; and Tosa Buntan, pomelo III) and GFJ significantly inhibited 6-hydroxylation of testosterone in human liver microsomes by 76.4, 67.2, 37.5, and 83.9%, respectively. The extract of pomelo I was as potent as that of GFJ. The metabolism of tacrolimus itself was also inhibited by the extract of pomelo I, as well as that of GFJ. Furthermore, the inhibition of both 6-hydroxylation of testosterone and metabolism of tacrolimus by pomelo I and GFJ was preincubation time-dependent. On the other hand, the extract of pomelo I had little effect on the transcellular transport of tacrolimus or [ 3 H]digoxin across a monolayer of LLC-GA5-COL150 cells (a porcine kidney epithelial cell line, LLC-PK1, transfected with human MDR1 cDNA and overexpressing human P-glycoprotein). In conclusion, pomelo constituents inhibit the activity of CYP3A4 and may thereby produce an increase in the blood level of tacrolimus.
The reaction of an α-haloketone with a nucleophile has three reaction channels: carbonyl addition, direct substitution, and proton abstraction. DFT calculations for the reaction of PhCOCH(2)Br with OH(-) showed that there exists an addition/substitution TS on the potential energy surface, in which OH(-) interacts with both the α- and carbonyl carbons. The intrinsic reaction coordinate calculations revealed that the TS serves as the TS for direct substitution for XC(6)H(4)COCH(2)Br with an electron-donating X or a X less electron-withdrawing than m-Cl, whereas the TS serves as the TS for carbonyl addition for derivatives with a X more electron-withdrawing than m-CF(3). Trajectory calculations starting at respective TS indicated that the single TS can serve for the two mechanisms, substitution and addition, through path bifurcation after the TS for borderline substrates. The reaction is the first example of dynamic path bifurcation for fundamental reaction types of carbonyl addition and substitution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.