On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian‐Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on vertical E × B upward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite airglow instrument to investigate storm time changes in neutral composition, O/N2 ratio. In this investigation, we corrected the latitudinal offset found in the works of Younas et al. (2020, https://doi.org/10.1029/2020JA027981). Interestingly, we observed that a double‐humped increase (DHI) seen at a middle latitude station (MGUE, ∼22°S) after the MP on the dayside in American sector (Younas et al., 2020, https://doi.org/10.1029/2020JA027981) did straddle ∼23.58°N and ∼22°S. On August 25, 2018, storm commencement was evident in Sym‐H (∼−8 nT) around 18:00 UT. It later became intensified (∼−174 nT) on August 26 around 08:00 UT. During storm's MP (after the MP), fountain effect operation was significantly enhanced (inhibited) in Asian‐Australian (American) sector. Middle latitude TEC during MP got reduced in American sector (13:00 LT–15:40 LT) compared to those seen in Asian‐Australian sector (13:00 LT–15:40 LT). The northern equatorial peak (∼25 TECU) seen at IHYO (14:00 LT) after MP in the American sector is higher when compared with that (∼21 TECU) seen at PPPC (11:40 LT) during MP in Asian‐Australian sector.
A reliable ionospheric specification by empirical models is important to mitigate the effects of the ionosphere on the operations of satellite‐based positioning and navigation systems. This study evaluates the capability of the International Reference Ionosphere (IRI) and IRI extended to the plasmasphere (IRI‐Plas) models in predicting the total electron content (TEC) over stations located in the southern hemisphere of the African equatorial and low‐latitude region. TEC derived from Global Positioning System (GPS) measurements were compared with TEC predicted by both the IRI‐Plas 2015 model and the three topside options of the IRI 2012 model (i.e., NeQuick (NeQ), IRI 2001 corrected factor (IRI‐01 Corr), and the IRI 2001(IRI‐01)). Generally, the diurnal and the seasonal structures of modeled TEC follow quite well with the observed TEC in all the stations, although with some upward and downward offsets observed during the daytime and nighttime. The prediction errors of both models exhibit latitudinal variation and these showed seasonal trends. The values generally decrease with increase in latitude. The TEC data‐model divergence of both models is most significant at stations in the equatorial region during the daytime and nighttime. Conversely, both models demonstrate most pronounced convergence during the nighttime at stations outside the equatorial region. The IRI‐Plas model, in general, performed better in months and seasons when the three options of the IRI model underestimate TEC. Factors such as the height limitation of the IRI model, the inaccurate predictions of the bottomside and topside electron density profiles were used to explain the data‐model discrepancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.