Homocysteine (Hcy) at elevated levels is a putative risk factor for many cardiovascular disorders including atherosclerosis. In the present study, we investigated the effect of Hcy on the expression of cyclooxygenase (COX)-2 in murine macrophages and the mechanisms involved. Hcy increased the expression of COX-2 mRNA and protein in dose- and time-dependent manners, but did not affect COX-1 expression. Hcy-induced COX-2 expression was attenuated not only by the calcium chelators, EGTA and BAPTA-AM, but also by an antioxidant, N-acetylcysteine. Calcium chelators also attenuated Hcy-induced reactive oxygen species (ROS) production in macrophages, indicating that Hcy-induced COX-2 expression might be mediated through ROS generated by calcium-dependent signaling pathways. In another series of experiments, Hcy increased the intracellular concentration of calcium in a dose-dependent manner, which was attenuated by MK-801, an N-methyl-D-aspartate (NMDA) receptor inhibitor, but not by bicuculline, a gamma-aminobutyric acid receptor inhibitor. Molecular inhibition of NMDA receptor using small interfering RNA also attenuated Hcy-induced increases in intracellular calcium. Furthermore, both ROS production and Hcy-induced COX-2 expression were also inhibited by MK-801 as well as by molecular inhibition of NMDA receptor. Taken together, these findings suggest that Hcy enhances COX-2 expression in murine macrophages by ROS generated via NMDA receptor-mediated calcium signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.