Abstract.Recently, cement augmentation technique was introduced to enhance screw fixation within the femoral head. This study investigates biomechanical efficacies of cement augmentation technique. Finite element models of the femur with sliding hip screw assemblies were constructed with and without bone cement augmentation. Appropriate contact conditions with varying friction coefficients were assigned to simulate the fracture planes and other interfacial regions. With cement augmentation, 80% reduction in stresses was found in the cancellous bone, suggesting reduced possibility of cancellous bone fracture and screw cut-outs. The peak von Mises stress within the cement mantle was about 1/3 of its fatigue strength, which suggested the longevity of the cement mantle and less likelihood of osteolysis due to cement debris. Micromotions at the hip screw interfaces were also dwon from 0.275mm to 0.008mm, an indication for strong fixation after the surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.