Forty Holstein dairy cows were used to determine the effectiveness of linoleic or linolenic-rich oils to enhance C18:2 cis-9, trans-11 conjugated linoleic acid (CLA) and C18:1 trans-11 (vaccenic acid; VA) in milk. The experimental design was a complete randomized design for 9 wk with measurements made during the last 6 wk. Cows were fed a basal diet containing 59% forage (control) or a basal diet supplemented with either 4% soybean oil (SO), 4% flaxseed oil (FO), or 2% soybean oil plus 2% flaxseed oil (SFO) on a dry matter basis. Total fatty acids in the diet were 3.27, 7.47, 7.61, and 7.50 g/100 g in control, SO, FO, and SFO diets, respectively. Feed intake, energy-corrected milk (ECM) yield, and ECM produced/kg of feed intake were similar among treatments. The proportions of VA were increased by 318, 105, and 206% in milk fat from cows in the SO, FO, and SFO groups compared with cows in the control group. Similar increases in C18:2 cis-9, trans-11 CLA were 273, 150, and 183% in SO, FO, and SFO treatments, respectively. Under similar feeding conditions, oils rich in linoleic acid (soybean oil) were more effective in enhancing VA and C18:2 cis-9, trans-11 CLA in milk fat than oils containing linolenic acid (flaxseed oil) in dairy cows fed high-forage diets (59% forage). The effects of mixing linoleic and linolenic acids (50:50) on enhancing VA and C18:2 cis-9, trans-11 CLA were additive, but not greater than when fed separately. Increasing the proportion of healthy fatty acids (VA and CLA) by feeding soybean or flaxseed oil would result in milk with higher nutritive and therapeutic value.
The objective of this study was to examine the effect of ruminal pulse dose of free linoleic acid (LA) and free docosahexaenoic acid (DHA) on microbial populations in the rumen, duodenal fatty acid (FA) flow, milk composition, and milk FA profiles of Chinese Holstein dairy cows. Four rumen- and duodenal-fistulated Chinese Holstein cows in mid lactation (138.5 ± 10d in milk) were randomly assigned to 3 treatment groups and 1 control group in a 4 × 4 Latin square design over 4 periods (3 wk per period). Diets contained either no LA or 2.7% LA and either no DHA or 0.5% DHA in a 2 × 2 factorial arrangement of treatments. Ruminal pulse dose with DHA increased counts of Megasphaera elsdenii, decreased Fibrobacter succinogenes, but did not affect Butyrivibrio fibrisolvens or Ruminococcus flavefaciens. The pulse dose of LA at 2.7% dry matter had no effect on the population sizes of the 3 major cellulolytic bacterial species or M. elsdenii, and no interaction was observed between LA and DHA. The pulse dose of LA or DHA, either alone or in combination, increased the duodenal flow of vaccenic acid (VA). The milk VA and cis-9,trans-11 conjugated linoleic acid (CLA) contents also increased in response to the fatty acid pulse dose, and the pulse dose of both LA and DHA together had the most profound stimulatory effect. This study indicated that ruminal pulse dose of LA or DHA could be used to increase duodenal flow of VA and the milk contents of potentially health-promoting FA, such as VA and cis-9,trans-11 CLA. These results might be useful in formulating dietary interventions to improve milk cis-9,trans-11 CLA contents.
In this study, changes in milk performance, nutrient digestibility, hindgut fermentation parameters and microflora were observed by inducing milk fat depression (MFD) in dairy cows fed with a high-starch or a high-fat diet. Eight Holstein cows were paired in a completely randomized cross-over design within two 35 d periods (18 d control period and 17d induction period). During the control period, all cows were fed the low-starch and low-fat diet (CON), and at the induction period, four of the cows were fed a high-starch diet with crushed wheat (IS), and the other cows were fed a high-fat diet with sunflower fat (IO). The results showed that, compared to when the cows were fed the CON diet, when cows were fed the IS or IO diet, they had lower milk fat concentrations, energy corrected milk, 3.5% fat-corrected milk yield, feed efficiency and apparent digestibility of NDF and ADF. However, cows fed the IO diet had a lower apparent digestibility of ether extracts. In addition, we observed that when cows were fed the high-starch (IS) or high-fat (IO) diet, they had a higher fecal concentration of propionate and acetate, and a lower NH3-N. Compared to when the cows were fed the CON diet, cows fed the IS diet had a lower pH, and cows fed the IO diet had a lower concentration of valerate in feces. In the hindgut microbiota, the relative abundance of Oscillospiraceae_UCG-005 was increased, while the Verrucomicrobiota and Lachnospiraceae_AC2044_group were decreased when cows were fed the IO diet. The relative abundance of Prevotellaceae_UCG-003 was increased, while the Alistipes and Verrucomicrobiota decreased, and the Treponema, Spirochaetota and Lachnospiraceae_AC2044_group showed a decreasing trend when cows were fed the IS diet. In summary, this study suggested that high-starch or high-fat feeding could induce MFD in dairy cows, and the high-fat diet had the greatest effect on milk fat; the high-starch or high-fat diet affected hindgut fermentation and apparent fiber digestibility. The changes in hindgut flora suggested that hindgut microbiota may be associated with MFD in cows.
The objective of this study was to determine whether malic acid could promote the accumulation of vaccenic acid in the rumen. The control diet was composed of a 65:35 ratio of forage to concentrate with 1% (dry matter basis) added fractionated fish oil (rich in docosahexaenoic acid), and treatment diets consisted of the control diet with added malic acid to achieve final concentrations of 10 mM (treatment 1) and 20 mM (treatment 2), respectively. The experiment was conducted with rumen-simulation equipment (Rusitec) consisting of 9 fermenters. Each treatment included 3 fermenters as replicates. After 7 d of incubation, concentrations of vaccenic acid from treatment 1 (4.38% fatty acids) and treatment 2 (4.46% fatty acids) were similar to that of the control treatment (4.51% fatty acids). The disappearance of docosahexaenoic acid was not different among the control, treatment 1, or treatment 2. These data indicated that malic acid did not promote the accumulation of vaccenic acid in ruminal fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.